Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI

Petkov CI, Kayser C, Augath M, Logothetis NK (2009)
Magn Reson Imaging 27(8): 1065-73.

Zeitschriftenaufsatz | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Petkov, C. I.; Kayser, ChristophUniBi ; Augath, M.; Logothetis, N. K.
Algorithms Animals Auditory Cortex/ physiology Auditory Perception/ physiology Brain Mapping/ methods Evoked Potentials; Auditory/ physiology Image Enhancement/ methods Image Interpretation; Computer-Assisted/ methods Macaca mulatta Magnetic Resonance Imaging/ methods Male Reproducibility of Results Sensitivity and Specificity
Magn Reson Imaging
1873-5894 (Electronic) 0730-725X (Linking)
Page URI


Petkov CI, Kayser C, Augath M, Logothetis NK. Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. Magn Reson Imaging. 2009;27(8):1065-73.
Petkov, C. I., Kayser, C., Augath, M., & Logothetis, N. K. (2009). Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. Magn Reson Imaging, 27(8), 1065-73. doi:10.1016/j.mri.2009.01.018
Petkov, C. I., Kayser, C., Augath, M., and Logothetis, N. K. (2009). Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. Magn Reson Imaging 27, 1065-73.
Petkov, C.I., et al., 2009. Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. Magn Reson Imaging, 27(8), p 1065-73.
C.I. Petkov, et al., “Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI”, Magn Reson Imaging, vol. 27, 2009, pp. 1065-73.
Petkov, C.I., Kayser, C., Augath, M., Logothetis, N.K.: Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. Magn Reson Imaging. 27, 1065-73 (2009).
Petkov, C. I., Kayser, Christoph, Augath, M., and Logothetis, N. K. “Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI”. Magn Reson Imaging 27.8 (2009): 1065-73.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Auditory functional magnetic resonance imaging in dogs--normalization and group analysis and the processing of pitch in the canine auditory pathways.
Bach JP, Lüpke M, Dziallas P, Wefstaedt P, Uppenkamp S, Seifert H, Nolte I., BMC Vet Res 12(), 2016
PMID: 26897016
Maps of the Auditory Cortex.
Brewer AA, Barton B., Annu Rev Neurosci 39(), 2016
PMID: 27145914
Different forms of effective connectivity in primate frontotemporal pathways.
Petkov CI, Kikuchi Y, Milne AE, Mishkin M, Rauschecker JP, Logothetis NK., Nat Commun 6(), 2015
PMID: 25613079
High-field functional magnetic resonance imaging of vocalization processing in marmosets.
Sadagopan S, Temiz-Karayol NZ, Voss HU., Sci Rep 5(), 2015
PMID: 26091254
Multivariate sensitivity to voice during auditory categorization.
Lee YS, Peelle JE, Kraemer D, Lloyd S, Granger R., J Neurophysiol 114(3), 2015
PMID: 26245316
Tonotopic mapping of human auditory cortex.
Saenz M, Langers DR., Hear Res 307(), 2014
PMID: 23916753
Auditory motion processing after early blindness.
Jiang F, Stecker GC, Fine I., J Vis 14(13), 2014
PMID: 25378368
Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.
Brown TA, Joanisse MF, Gati JS, Hughes SM, Nixon PL, Menon RS, Lomber SG., Neuroimage 64(), 2013
PMID: 23000258
Optimized design and analysis of sparse-sampling FMRI experiments.
Perrachione TK, Ghosh SS., Front Neurosci 7(), 2013
PMID: 23616742
Spatial representations of temporal and spectral sound cues in human auditory cortex.
Herdener M, Esposito F, Scheffler K, Schneider P, Logothetis NK, Uludag K, Kayser C., Cortex 49(10), 2013
PMID: 23706955
Functional magnetic resonance imaging of the ascending stages of the auditory system in dogs.
Bach JP, Lüpke M, Dziallas P, Wefstaedt P, Uppenkamp S, Seifert H, Nolte I., BMC Vet Res 9(), 2013
PMID: 24131784
BOLD fMRI investigation of the rat auditory pathway and tonotopic organization.
Cheung MM, Lau C, Zhou IY, Chan KC, Cheng JS, Zhang JW, Ho LC, Wu EX., Neuroimage 60(2), 2012
PMID: 22297205
Orthogonal acoustic dimensions define auditory field maps in human cortex.
Barton B, Venezia JH, Saberi K, Hickok G, Brewer AA., Proc Natl Acad Sci U S A 109(50), 2012
PMID: 23188798
Human primary auditory cortex follows the shape of Heschl's gyrus.
Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M., J Neurosci 31(40), 2011
PMID: 21976491
Functional properties of human auditory cortical fields.
Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC, Rinne T, Kang X., Front Syst Neurosci 4(), 2010
PMID: 21160558

39 References

Daten bereitgestellt von Europe PubMed Central.

Functional imaging of the monkey brain.
Logothetis NK, Guggenberger H, Peled S, Pauls J., Nat. Neurosci. 2(6), 1999
PMID: 10448221
Neurophysiological investigation of the basis of the fMRI signal.
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A., Nature 412(6843), 2001
PMID: 11449264
Mapping the parietal cortex of human and non-human primates.
Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W., Neuropsychologia 44(13), 2005
PMID: 16343560
Comparative mapping of higher visual areas in monkeys and humans.
Orban GA, Van Essen D, Vanduffel W., Trends Cogn. Sci. (Regul. Ed.) 8(7), 2004
PMID: 15242691
Functional imaging reveals numerous fields in the monkey auditory cortex.
Petkov CI, Kayser C, Augath M, Logothetis NK., PLoS Biol. 4(7), 2006
PMID: 16774452
A voice region in the monkey brain.
Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, Logothetis NK., Nat. Neurosci. 11(3), 2008
PMID: 18264095
Integration of touch and sound in auditory cortex.
Kayser C, Petkov CI, Augath M, Logothetis NK., Neuron 48(2), 2005
PMID: 16242415
Functional imaging reveals visual modulation of specific fields in auditory cortex.
Kayser C, Petkov CI, Augath M, Logothetis NK., J. Neurosci. 27(8), 2007
PMID: 17314280
Sound level dependent activation in the macaque auditory cortex: an fMRI study
Tanji, Soc Neurosci Abstr (), 2007
Characterisation of the amplitude modulation transfer function in the macaque auditory pathway using fMRI
Baumann, Soc Neurosci Abstr (), 2007
The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.
Logothetis NK., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357(1424), 2002
PMID: 12217171
What we can do and what we cannot do with fMRI.
Logothetis NK., Nature 453(7197), 2008
PMID: 18548064
Acoustic noise and functional magnetic resonance imaging: current strategies and future prospects.
Amaro E Jr, Williams SC, Shergill SS, Fu CH, MacSweeney M, Picchioni MM, Brammer MJ, McGuire PK., J Magn Reson Imaging 16(5), 2002
PMID: 12412026
"Sparse" temporal sampling in auditory fMRI.
Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW., Hum Brain Mapp 7(3), 1999
PMID: 10194620
Event-related fMRI of the auditory cortex.
Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B., Neuroimage 10(4), 1999
PMID: 10493900
Neural correlates of sensory and decision processes in auditory object identification.
Binder JR, Liebenthal E, Possing ET, Medler DA, Ward BD., Nat. Neurosci. 7(3), 2004
PMID: 14966525
Mirror-symmetric tonotopic maps in human primary auditory cortex.
Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R., Neuron 40(4), 2003
PMID: 14622588
Tonotopy in human auditory cortex examined with functional magnetic resonance imaging
Wessinger, Neuroimage 5(), 1997
Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI.
Bilecen D, Scheffler K, Schmid N, Tschopp K, Seelig J., Hear. Res. 126(1-2), 1998
PMID: 9872130
Is it tonotopy after all?
Schonwiesner M, von Cramon DY, Rubsamen R., Neuroimage 17(3), 2002
PMID: 12414256
Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity.
Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM., J. Neurophysiol. 91(3), 2003
PMID: 14614108
Attentional modulation of human auditory cortex.
Petkov CI, Kang X, Alho K, Bertrand O, Yund EW, Woods DL., Nat. Neurosci. 7(6), 2004
PMID: 15156150
Fast, noniterative shimming of spatially localized signals. In vivo analysis of the magnetic field along axes
Gruetter, J Magn Reson 96(2), 1992
Ultra high-resolution fMRI in monkeys with implanted RF coils.
Logothetis N, Merkle H, Augath M, Trinath T, Ugurbil K., Neuron 35(2), 2002
PMID: 12160742
Level-dependent representation of stimulus frequency in cat primary auditory cortex.
Phillips DP, Semple MN, Calford MB, Kitzes LM., Exp Brain Res 102(2), 1994
PMID: 7705501
Electrodynamic headphones and woofers for application in magnetic resonance imaging scanners.
Baumgart F, Kaulisch T, Tempelmann C, Gaschler-Markefski B, Tegeler C, Schindler F, Stiller D, Scheich H., Med Phys 25(10), 1998
PMID: 9800716
Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain.
Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ., IEEE Trans Med Imaging 18(1), 1999
PMID: 10193695
Combining voxel intensity and cluster extent with permutation test framework.
Hayasaka S, Nichols TE., Neuroimage 23(1), 2004
PMID: 15325352
Processing of complex sounds in the macaque nonprimary auditory cortex.
Rauschecker JP, Tian B, Hauser M., Science 268(5207), 1995
PMID: 7701330
Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging.
Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP., J Cogn Neurosci 13(1), 2001
PMID: 11224904
Functional MRI of human auditory cortex using block and event-related designs.
Le TH, Patel S, Roberts TP., Magn Reson Med 45(2), 2001
PMID: 11180433
The effect of MR scanner noise on auditory cortex activity using fMRI.
Scarff CJ, Dort JC, Eggermont JJ, Goodyear BG., Hum Brain Mapp 22(4), 2004
PMID: 15202112
A silent event-related functional MRI technique for brain activation studies without interference of scanner acoustic noise.
Yang Y, Engelien A, Engelien W, Xu S, Stern E, Silbersweig DA., Magn Reson Med 43(2), 2000
PMID: 10680681
Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI.
Schwarzbauer C, Davis MH, Rodd JM, Johnsrude I., Neuroimage 29(3), 2005
PMID: 16226896
Inaudible functional MRI using a truly mute gradient echo sequence.
Marcar VL, Girard F, Rinkel Y, Schneider JF, Martin E., Neuroradiology 44(11), 2002
PMID: 12428122
Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.
Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K., Neuroimage 29(3), 2005
PMID: 16253522


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 19269764
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche