How are complex cell properties adapted to the statistics of natural stimuli?

Kording KP, Kayser C, Einhauser W, Konig P (2004)
J Neurophysiol 91(1): 206-12.

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kording, K. P.; Kayser, ChristophUniBi ; Einhauser, W.; Konig, P.
Stichworte
Animals Cats Computer Simulation Models; Neurological Neural Networks (Computer) Neurons/ physiology Orientation Photic Stimulation Space Perception Visual Cortex/ cytology/physiology Visual Fields/ physiology Visual Pathways/anatomy & histology/physiology
Erscheinungsjahr
2004
Zeitschriftentitel
J Neurophysiol
Band
91
Ausgabe
1
Seite(n)
206-12
ISBN
0022-3077 (Print) 0022-3077 (Linking)
ISSN
0022-3077
Page URI
https://pub.uni-bielefeld.de/record/2914216

Zitieren

Kording KP, Kayser C, Einhauser W, Konig P. How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol. 2004;91(1):206-12.
Kording, K. P., Kayser, C., Einhauser, W., & Konig, P. (2004). How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol, 91(1), 206-12. doi:10.1152/jn.00149.2003
Kording, K. P., Kayser, Christoph, Einhauser, W., and Konig, P. 2004. “How are complex cell properties adapted to the statistics of natural stimuli?”. J Neurophysiol 91 (1): 206-12.
Kording, K. P., Kayser, C., Einhauser, W., and Konig, P. (2004). How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol 91, 206-12.
Kording, K.P., et al., 2004. How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol, 91(1), p 206-12.
K.P. Kording, et al., “How are complex cell properties adapted to the statistics of natural stimuli?”, J Neurophysiol, vol. 91, 2004, pp. 206-12.
Kording, K.P., Kayser, C., Einhauser, W., Konig, P.: How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol. 91, 206-12 (2004).
Kording, K. P., Kayser, Christoph, Einhauser, W., and Konig, P. “How are complex cell properties adapted to the statistics of natural stimuli?”. J Neurophysiol 91.1 (2004): 206-12.

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Bio-inspired visual self-localization in real world scenarios using Slow Feature Analysis.
Metka B, Franzius M, Bauer-Wersing U., PLoS One 13(9), 2018
PMID: 30240451
Toward an Integration of Deep Learning and Neuroscience.
Marblestone AH, Wayne G, Kording KP., Front Comput Neurosci 10(), 2016
PMID: 27683554
Slowness and sparseness have diverging effects on complex cell learning.
Lies JP, Häfner RM, Bethge M., PLoS Comput Biol 10(3), 2014
PMID: 24603197
Slow feature analysis on retinal waves leads to V1 complex cells.
Dähne S, Wilbert N, Wiskott L., PLoS Comput Biol 10(5), 2014
PMID: 24810948
Predictions in the light of your own action repertoire as a general computational principle.
König P, Wilming N, Kaspar K, Nagel SK, Onat S., Behav Brain Sci 36(3), 2013
PMID: 23663324
Representation learning: a review and new perspectives.
Bengio Y, Courville A, Vincent P., IEEE Trans Pattern Anal Mach Intell 35(8), 2013
PMID: 23787338
Learning invariance from natural images inspired by observations in the primary visual cortex.
Teichmann M, Wiltschut J, Hamker F., Neural Comput 24(5), 2012
PMID: 22295987
Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics.
Coen-Cagli R, Dayan P, Schwartz O., PLoS Comput Biol 8(3), 2012
PMID: 22396635
Quantifying utricular stimulation during natural behavior.
Rivera AR, Davis J, Grant W, Blob RW, Peterson E, Neiman AB, Rowe M., J Exp Zool A Ecol Genet Physiol 317(8), 2012
PMID: 22753360
Context matters: the illusive simplicity of macaque V1 receptive fields.
Haslinger R, Pipa G, Lima B, Singer W, Brown EN, Neuenschwander S., PLoS One 7(7), 2012
PMID: 22802940
Local field potentials indicate network state and account for neuronal response variability.
Kelly RC, Smith MA, Kass RE, Lee TS., J Comput Neurosci 29(3), 2010
PMID: 20094906
Involving motor capabilities in the formation of sensory space representations.
Weiller D, Märtin R, Dähne S, Engel AK, König P., PLoS One 5(4), 2010
PMID: 20442849
Unsupervised learning of reflexive and action-based affordances to model adaptive navigational behavior.
Weiller D, Läer L, Engel AK, König P., Front Neurorobot 4(), 2010
PMID: 20485463
Sensory adaptation and short term plasticity as Bayesian correction for a changing brain.
Stevenson IH, Cronin B, Sur M, Kording KP., PLoS One 5(8), 2010
PMID: 20865056
Statistics of natural movements are reflected in motor errors.
Howard IS, Ingram JN, Körding KP, Wolpert DM., J Neurophysiol 102(3), 2009
PMID: 19605616
A structured model of video reproduces primary visual cortical organisation.
Berkes P, Turner RE, Sahani M., PLoS Comput Biol 5(9), 2009
PMID: 19730679
The statistics of natural hand movements.
Ingram JN, Körding KP, Howard IS, Wolpert DM., Exp Brain Res 188(2), 2008
PMID: 18369608
Analysis and interpretation of quadratic models of receptive fields.
Berkes P, Wiskott L., Nat Protoc 2(2), 2007
PMID: 17406601
A maximum-likelihood interpretation for slow feature analysis.
Turner R, Sahani M., Neural Comput 19(4), 2007
PMID: 17348772
Slowness: an objective for spike-timing-dependent plasticity?
Sprekeler H, Michaelis C, Wiskott L., PLoS Comput Biol 3(6), 2007
PMID: 17604445
Complex cell pooling and the statistics of natural images.
Hyvärinen A, Köster U., Network 18(2), 2007
PMID: 17852755
Human eye-head co-ordination in natural exploration.
Einhäuser W, Schumann F, Bardins S, Bartl K, Böning G, Schneider E, König P., Network 18(3), 2007
PMID: 17926195
The visual ecology of fiddler crabs.
Zeil J, Hemmi JM., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(1), 2006
PMID: 16341863
A model of the ventral visual system based on temporal stability and local memory.
Wyss R, König P, Verschure PF., PLoS Biol 4(5), 2006
PMID: 16605306
Laminar processing in the visual cortical column.
Hirsch JA, Martinez LM., Curr Opin Neurobiol 16(4), 2006
PMID: 16842989
Soft mixer assignment in a hierarchical generative model of natural scene statistics.
Schwartz O, Sejnowski TJ, Dayan P., Neural Comput 18(11), 2006
PMID: 16999575
Nonlinear and higher-order approaches to the encoding of natural scenes.
Zetzsche C, Nuding U., Network 16(2-3), 2005
PMID: 16411496
Learning viewpoint invariant object representations using a temporal coherence principle.
Einhäuser W, Hipp J, Eggert J, Körner E, König P., Biol Cybern 93(1), 2005
PMID: 16021516

35 References

Daten bereitgestellt von Europe PubMed Central.

Spatiotemporal energy models for the perception of motion.
Adelson EH, Bergen JR., J Opt Soc Am A 2(2), 1985
PMID: 3973762
Responses of neurons in primary and inferior temporal visual cortices to natural scenes.
Baddeley R, Abbott LF, Booth MC, Sengpiel F, Freeman T, Wakeman EA, Rolls ET., Proc. Biol. Sci. 264(1389), 1997
PMID: 9447735

AUTHOR UNKNOWN, 0
The "independent components" of natural scenes are edge filters.
Bell AJ, Sejnowski TJ., Vision Res. 37(23), 1997
PMID: 9425547
Complex cells as cortically amplified simple cells.
Chance FS, Nelson SB, Abbott LF., Nat. Neurosci. 2(3), 1999
PMID: 10195222
Learning the invariance properties of complex cells from their responses to natural stimuli.
Einhauser W, Kayser C, Konig P, Kording KP., Eur. J. Neurosci. 15(3), 2002
PMID: 11876775

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Simple-cell-like receptive fields maximize temporal coherence in natural video.
Hurri J, Hyvarinen A., Neural Comput 15(3), 2003
PMID: 12620162

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Receptive field organization of complex cells in the cat's striate cortex.
Movshon JA, Thompson ID, Tolhurst DJ., J. Physiol. (Lond.) 283(), 1978
PMID: 722592

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Classifying simple and complex cells on the basis of response modulation.
Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, Bonds AB., Vision Res. 31(7-8), 1991
PMID: 1909826

AUTHOR UNKNOWN, 0
Complex-cell receptive field models.
Spitzer H, Hochstein S., Prog. Neurobiol. 31(4), 1988
PMID: 3045883
Temporal constraints on visual learning: a computational model.
Stone JV, Harper N., Perception 28(9), 1999
PMID: 10694959

AUTHOR UNKNOWN, 0
Independent component filters of natural images compared with simple cells in primary visual cortex.
van Hateren JH, van der Schaaf A., Proc. Biol. Sci. 265(1394), 1998
PMID: 9523437
Invariant face and object recognition in the visual system.
Wallis G, Rolls ET., Prog. Neurobiol. 51(2), 1997
PMID: 9247963
Relationship between spatial-frequency and orientation tuning of striate-cortex cells.
Webster MA, De Valois RL., J Opt Soc Am A 2(7), 1985
PMID: 4020509
Slow feature analysis: unsupervised learning of invariances.
Wiskott L, Sejnowski TJ., Neural Comput 14(4), 2002
PMID: 11936959
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 12904330
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche