Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks

Keitel A, Ince RA, Gross J, Kayser C (2017)
Neuroimage 147: 32-42.

Zeitschriftenaufsatz | Englisch
 
Download
OA 2.06 MB
Autor*in
Keitel, A.; Ince, R. A.; Gross, J.; Kayser, ChristophUniBi
Erscheinungsjahr
2017
Zeitschriftentitel
Neuroimage
Band
147
Seite(n)
32-42
ISBN
1095-9572 (Electronic) 1053-8119 (Linking)
ISSN
1053-8119
Page URI
https://pub.uni-bielefeld.de/record/2914213

Zitieren

Keitel A, Ince RA, Gross J, Kayser C. Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks. Neuroimage. 2017;147:32-42.
Keitel, A., Ince, R. A., Gross, J., & Kayser, C. (2017). Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks. Neuroimage, 147, 32-42. doi:10.1016/j.neuroimage.2016.11.062
Keitel, A., Ince, R. A., Gross, J., and Kayser, C. (2017). Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks. Neuroimage 147, 32-42.
Keitel, A., et al., 2017. Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks. Neuroimage, 147, p 32-42.
A. Keitel, et al., “Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks”, Neuroimage, vol. 147, 2017, pp. 32-42.
Keitel, A., Ince, R.A., Gross, J., Kayser, C.: Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks. Neuroimage. 147, 32-42 (2017).
Keitel, A., Ince, R. A., Gross, J., and Kayser, Christoph. “Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks”. Neuroimage 147 (2017): 32-42.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:52Z
MD5 Prüfsumme
d216a42e3979d2a31d99d5b1986b7317

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Enhanced Auditory Steady-State Response Using an Optimized Chirp Stimulus-Evoked Paradigm.
Liu X, Liu S, Guo D, Sheng Y, Ke Y, An X, He F, Ming D., Sensors (Basel) 19(3), 2019
PMID: 30759874
Scale-Free Amplitude Modulation of Neuronal Oscillations Tracks Comprehension of Accelerated Speech.
Borges AFT, Giraud AL, Mansvelder HD, Linkenkaer-Hansen K., J Neurosci 38(3), 2018
PMID: 29217685
Editorial: Brain Oscillations in Human Communication.
Rimmele JM, Gross J, Molholm S, Keitel A., Front Hum Neurosci 12(), 2018
PMID: 29467639
Cortical Tracking of Global and Local Variations of Speech Rhythm during Connected Natural Speech Perception.
Alexandrou AM, Saarinen T, Kujala J, Salmelin R., J Cogn Neurosci 30(11), 2018
PMID: 29916785
Temporal expectancies driven by self- and externally generated rhythms.
Jones A, Hsu YF, Granjon L, Waszak F., Neuroimage 156(), 2017
PMID: 28528848
Contributions of local speech encoding and functional connectivity to audio-visual speech perception.
Giordano BL, Ince RAA, Gross J, Schyns PG, Panzeri S, Kayser C., Elife 6(), 2017
PMID: 28590903

125 References

Daten bereitgestellt von Europe PubMed Central.

Speech comprehension is correlated with temporal response patterns recorded from auditory cortex.
Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM., Proc. Natl. Acad. Sci. U.S.A. 98(23), 2001
PMID: 11698688
Human cortical responses to the speech envelope.
Aiken SJ, Picton TW., Ear Hear 29(2), 2008
PMID: 18595182
Enhanced neural synchrony between left auditory and premotor cortex is associated with successful phonetic categorization.
Alho J, Lin FH, Sato M, Tiitinen H, Sams M, Jaaskelainen IP., Front Psychol 5(), 2014
PMID: 24834062
Delta-Beta Coupled Oscillations Underlie Temporal Prediction Accuracy.
Arnal LH, Doelling KB, Poeppel D., Cereb. Cortex 25(9), 2014
PMID: 24846147
Cortical oscillations and sensory predictions.
Arnal LH, Giraud AL., Trends Cogn. Sci. (Regul. Ed.) 16(7), 2012
PMID: 22682813
The proactive brain: using analogies and associations to generate predictions.
Bar M., Trends Cogn. Sci. (Regul. Ed.) 11(7), 2007
PMID: 17548232
Oscillatory neuronal dynamics during language comprehension.
Bastiaansen M, Hagoort P., Prog. Brain Res. 159(), 2006
PMID: 17071231
Theta responses are involved in lexical-semantic retrieval during language processing.
Bastiaansen MC, van der Linden M, Ter Keurs M, Dijkstra T, Hagoort P., J Cogn Neurosci 17(3), 2005
PMID: 15814011
Listening to rhythms activates motor and premotor cortices.
Bengtsson SL, Ullen F, Ehrsson HH, Hashimoto T, Kito T, Naito E, Forssberg H, Sadato N., Cortex 45(1), 2008
PMID: 19041965
A method for registration of 3-D shapes
Besl P.J., Mckay N.D.., 1992
Neurobiological roots of language in primate audition: common computational properties.
Bornkessel-Schlesewsky I, Schlesewsky M, Small SL, Rauschecker JP., Trends Cogn. Sci. (Regul. Ed.) 19(3), 2015
PMID: 25600585
The Psychophysics Toolbox.
Brainard DH., Spat Vis 10(4), 1997
PMID: 9176952
Interareal oscillatory synchronization in top-down neocortical processing.
Bressler SL, Richter CG., Curr. Opin. Neurobiol. 31(), 2014
PMID: 25217807
High gamma power is phase-locked to theta oscillations in human neocortex.
Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT., Science 313(5793), 2006
PMID: 16973878
The natural statistics of audiovisual speech.
Chandrasekaran C, Trubanova A, Stillittano S, Caplier A, Ghazanfar AA., PLoS Comput. Biol. 5(7), 2009
PMID: 19609344
Syllabic rate: a new concept in the study of speech rate variation
Cotton J.C.., 1936
Phoneme and word recognition in the auditory ventral stream.
DeWitt I, Rauschecker JP., Proc. Natl. Acad. Sci. U.S.A. 109(8), 2012
PMID: 22308358
Low-Frequency Cortical Entrainment to Speech Reflects Phoneme-Level Processing.
Di Liberto GM, O'Sullivan JA, Lalor EC., Curr. Biol. 25(19), 2015
PMID: 26412129
Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability.
van Dijk H, Schoffelen JM, Oostenveld R, Jensen O., J. Neurosci. 28(8), 2008
PMID: 18287498
Predicting language: MEG evidence for lexical preactivation.
Dikker S, Pylkkanen L., Brain Lang 127(1), 2012
PMID: 23040469
Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure
Ding N., Chatterjee M., Simon J.Z.., 2014
Cortical tracking of hierarchical linguistic structures in connected speech.
Ding N, Melloni L, Zhang H, Tian X, Poeppel D., Nat. Neurosci. 19(1), 2015
PMID: 26642090
Temporal envelope and fine structure cues for speech intelligibility.
Drullman R., J. Acoust. Soc. Am. 97(1), 1995
PMID: 7860835
Beta-band oscillations--signalling the status quo?
Engel AK, Fries P., Curr. Opin. Neurobiol. 20(2), 2010
PMID: 20359884
The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex.
Fontolan L, Morillon B, Liegeois-Chauvel C, Giraud AL., Nat Commun 5(), 2014
PMID: 25178489
Towards a neural basis of auditory sentence processing.
Friederici AD., Trends Cogn. Sci. (Regul. Ed.) 6(2), 2002
PMID: 15866191
The cortical language circuit: from auditory perception to sentence comprehension.
Friederici AD., Trends Cogn. Sci. (Regul. Ed.) 16(5), 2012
PMID: 22516238
The language network.
Friederici AD, Gierhan SM., Curr. Opin. Neurobiol. 23(2), 2012
PMID: 23146876
Neuronal oscillations and speech perception: critical-band temporal envelopes are the essence.
Ghitza O, Giraud AL, Poeppel D., Front Hum Neurosci 6(), 2012
PMID: 23316150
Connections for auditory language in the human brain.
Gierhan SM., Brain Lang 127(2), 2013
PMID: 23290461
Speech rhythm and temporal structure: converging perspectives?
Goswami U., Leong V.., 2013
Rhythm and beat perception in motor areas of the brain.
Grahn JA, Brett M., J Cogn Neurosci 19(5), 2007
PMID: 17488212
Investigating causal relations by econometric models and cross-spectral methods
Granger C.W.J.., 1969
Temporal properties of spontaneous speech – a syllable-centric perspective
Greenberg S., Carvey H., Hitchcock L., Chang S.Y.., 2003
Neuroimaging of syntax and syntactic processing.
Grodzinsky Y, Friederici AD., Curr. Opin. Neurobiol. 16(2), 2006
PMID: 16563739
Speech rhythms and multiplexed oscillatory sensory coding in the human brain.
Gross J, Hoogenboom N, Thut G, Schyns P, Panzeri S, Belin P, Garrod S., PLoS Biol. 11(12), 2013
PMID: 24391472
Prestimulus oscillations predict visual perception performance between and within subjects.
Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bauml KH., Neuroimage 37(4), 2007
PMID: 17706433
Entrained neural oscillations in multiple frequency bands comodulate behavior.
Henry MJ, Herrmann B, Obleser J., Proc. Natl. Acad. Sci. U.S.A. 111(41), 2014
PMID: 25267634
Frequency modulation entrains slow neural oscillations and optimizes human listening behavior.
Henry MJ, Obleser J., Proc. Natl. Acad. Sci. U.S.A. 109(49), 2012
PMID: 23151506
The cortical organization of speech processing.
Hickok G, Poeppel D., Nat. Rev. Neurosci. 8(5), 2007
PMID: 17431404
Nonparametric analysis of statistic images from functional mapping experiments.
Holmes AP, Blair RC, Watson JD, Ford I., J. Cereb. Blood Flow Metab. 16(1), 1996
PMID: 8530558
Speech encoding by coupled cortical theta and gamma oscillations.
Hyafil A, Fontolan L, Kabdebon C, Gutkin B, Giraud AL., Elife 4(), 2015
PMID: 26023831
A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula
Ince R.A., Giordano B.L., Kayser C., Rousselet G.A., Gross J., Schyns P.G.., 2016
Tracing the Flow of Perceptual Features in an Algorithmic Brain Network.
Ince RA, van Rijsbergen NJ, Thut G, Rousselet GA, Gross J, Panzeri S, Schyns PG., Sci Rep 5(), 2015
PMID: 26635299
Cross-frequency coupling between neuronal oscillations.
Jensen O, Colgin LL., Trends Cogn. Sci. (Regul. Ed.) 11(7), 2007
PMID: 17548233
Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha.
Kayser SJ, Ince RA, Gross J, Kayser C., J. Neurosci. 35(44), 2015
PMID: 26538641
Prestimulus influences on auditory perception from sensory representations and decision processes.
Kayser SJ, McNair SW, Kayser C., Proc. Natl. Acad. Sci. U.S.A. 113(17), 2016
PMID: 27071110
Induced alpha band power changes in the human EEG and attention.
Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J., Neurosci. Lett. 244(2), 1998
PMID: 9572588
Loudness predicts prominence: fundamental frequency lends little.
Kochanski G, Grabe E, Coleman J, Rosner B., J. Acoust. Soc. Am. 118(2), 2005
PMID: 16158659
Entrainment of neuronal oscillations as a mechanism of attentional selection.
Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE., Science 320(5872), 2008
PMID: 18388295
The leading sense: supramodal control of neurophysiological context by attention.
Lakatos P, O'Connell MN, Barczak A, Mills A, Javitt DC, Schroeder CE., Neuron 64(3), 2009
PMID: 19914189
Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions
de F.P., Jensen O., Bauer M., Toni I.., 2008
The functional neuroanatomy of comprehension and memory: the importance of prior knowledge.
Maguire EA, Frith CD, Morris RG., Brain 122 ( Pt 10)(), 1999
PMID: 10506087
Nonparametric statistical testing of EEG- and MEG-data.
Maris E, Oostenveld R., J. Neurosci. Methods 164(1), 2007
PMID: 17517438
Linguistic bias modulates interpretation of speech via neural delta-band oscillations
Meyer L., Henry M.J., Gaston P., Schmuck N., Friederici A.D.., 2016
FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences
Meyer M., Alter K., Friederici A.D., Lohmann G., von D.Y.., 2002
Peak frequency in the theta and alpha bands correlates with human working memory capacity.
Moran RJ, Campo P, Maestu F, Reilly RB, Dolan RJ, Strange BA., Front Hum Neurosci 4(), 2010
PMID: 21206531
Predictive motor control of sensory dynamics in auditory active sensing.
Morillon B, Hackett TA, Kajikawa Y, Schroeder CE., Curr. Opin. Neurobiol. 31(), 2015
PMID: 25594376
Motor contributions to the temporal precision of auditory attention.
Morillon B, Schroeder CE, Wyart V., Nat Commun 5(), 2014
PMID: 25314898
A cautionary note on the interpretation of phase-locking estimates with concurrent changes in power.
Muthukumaraswamy SD, Singh KD., Clin Neurophysiol 122(11), 2011
PMID: 21543253
Good vibrations: oscillatory phase shapes perception.
Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS., Neuroimage 63(2), 2012
PMID: 22836177
EEG phase patterns reflect the selectivity of neural firing.
Ng BS, Logothetis NK, Kayser C., Cereb. Cortex 23(2), 2012
PMID: 22345353
Neural Oscillations in Speech: Don't be Enslaved by the Envelope.
Obleser J, Herrmann B, Henry MJ., Front Hum Neurosci 6(), 2012
PMID: 22969717
Adverse listening conditions and memory load drive a common α oscillatory network.
Obleser J, Wostmann M, Hellbernd N, Wilsch A, Maess B., J. Neurosci. 32(36), 2012
PMID: 22956828
FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Oostenveld R, Fries P, Maris E, Schoffelen JM., Comput Intell Neurosci 2011(), 2010
PMID: 21253357
Neural Oscillations Carry Speech Rhythm through to Comprehension.
Peelle JE, Davis MH., Front Psychol 3(), 2012
PMID: 22973251
The analysis of speech in different temporal integration windows: cerebral lateralization as 'asymmetric sampling in time'
Poeppel D.., 2003
Motor cortex maps articulatory features of speech sounds.
Pulvermuller F, Huss M, Kherif F, Moscoso del Prado Martin F, Hauk O, Shtyrov Y., Proc. Natl. Acad. Sci. U.S.A. 103(20), 2006
PMID: 16682637
Gating of human theta oscillations by a working memory task.
Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE., J. Neurosci. 21(9), 2001
PMID: 11312302
Control mechanisms in working memory: a possible function of EEG theta oscillations.
Sauseng P, Griesmayr B, Freunberger R, Klimesch W., Neurosci Biobehav Rev 34(7), 2009
PMID: 20006645
Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence.
Schomers MR, Kirilina E, Weigand A, Bajbouj M, Pulvermuller F., Cereb. Cortex 25(10), 2014
PMID: 25452575
Measuring information transfer
Schreiber T., Phys. Rev. Lett. 85(2), 2000
PMID: 10991308
Low-frequency neuronal oscillations as instruments of sensory selection.
Schroeder CE, Lakatos P., Trends Neurosci. 32(1), 2008
PMID: 19012975
Amplitude onsets and spectral energy in perceptual experience.
Scott S, McGettigan C., Front Psychol 3(), 2012
PMID: 22470359
Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe.
Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S., Neuron 33(3), 2002
PMID: 11832233
Chimaeric sounds reveal dichotomies in auditory perception.
Smith ZM, Delgutte B, Oxenham AJ., Nature 416(6876), 2002
PMID: 11882898

Sokal R.R., Rohlf F.J.., 1995
The Effects of Cognitive Control and Time on Frontal Beta Oscillations.
Stoll FM, Wilson CRE, Faraut MCM, Vezoli J, Knoblauch K, Procyk E., Cereb. Cortex 26(4), 2015
PMID: 25638168
Alpha phase determines successful lexical decision in noise.
Strauß A, Henry MJ, Scharinger M, Obleser J., J. Neurosci. 35(7), 2015
PMID: 25698760
Alpha and theta brain oscillations index dissociable processes in spoken word recognition.
Strauß A, Kotz SA, Scharinger M, Obleser J., Neuroimage 97(), 2014
PMID: 24747736
Cortical alpha oscillations as a tool for auditory selective inhibition.
Strauß A, Wostmann M, Obleser J., Front Hum Neurosci 8(), 2014
PMID: 24904385
The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex.
Szymanski FD, Rabinowitz NC, Magri C, Panzeri S, Schnupp JW., J. Neurosci. 31(44), 2011
PMID: 22049422
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M., Neuroimage 15(1), 2002
PMID: 11771995
Frontal oscillatory dynamics predict feedback learning and action adjustment.
van de Vijver I, Ridderinkhof KR, Cohen MX., J Cogn Neurosci 23(12), 2011
PMID: 21812570
Localization of brain electrical activity via linearly constrained minimum variance spatial filtering.
Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A., IEEE Trans Biomed Eng 44(9), 1997
PMID: 9282479
Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing.
Vigneau M, Beaucousin V, Herve PY, Duffau H, Crivello F, Houde O, Mazoyer B, Tzourio-Mazoyer N., Neuroimage 30(4), 2006
PMID: 16413796
Listening to speech activates motor areas involved in speech production.
Wilson SM, Saygin AP, Sereno MI, Iacoboni M., Nat. Neurosci. 7(7), 2004
PMID: 15184903
Neural alpha dynamics in younger and older listeners reflect acoustic challenges and predictive benefits.
Wostmann M, Herrmann B, Wilsch A, Obleser J., J. Neurosci. 35(4), 2015
PMID: 25632123
Relative contributions of spectral and temporal cues for phoneme recognition.
Xu L, Thompson CS, Pfingst BE., J. Acoust. Soc. Am. 117(5), 2005
PMID: 15957791
PET studies of phonetic processing of speech: review, replication, and reanalysis.
Zatorre RJ, Meyer E, Gjedde A, Evans AC., Cereb. Cortex 6(1), 1996
PMID: 8670635
Speech recognition with amplitude and frequency modulations.
Zeng FG, Nie K, Stickney GS, Kong YY, Vongphoe M, Bhargave A, Wei C, Cao K., Proc. Natl. Acad. Sci. U.S.A. 102(7), 2005
PMID: 15677723
The Role of High-Level Processes for Oscillatory Phase Entrainment to Speech Sound.
Zoefel B, VanRullen R., Front Hum Neurosci 9(), 2015
PMID: 26696863

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27903440
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche