Learning the nonlinearity of neurons from natural visual stimuli

Kayser C, Kording KP, Konig P (2003)
Neural Comput 15(8): 1751-9.

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kayser, ChristophUniBi ; Kording, K. P.; Konig, P.
Stichworte
Models; Neurological Neurons/ physiology Nonlinear Dynamics Photic Stimulation Visual Pathways/cytology/ physiology
Erscheinungsjahr
2003
Zeitschriftentitel
Neural Comput
Band
15
Ausgabe
8
Seite(n)
1751-9
ISBN
0899-7667 (Print) 0899-7667 (Linking)
ISSN
0899-7667
Page URI
https://pub.uni-bielefeld.de/record/2914186

Zitieren

Kayser C, Kording KP, Konig P. Learning the nonlinearity of neurons from natural visual stimuli. Neural Comput. 2003;15(8):1751-9.
Kayser, C., Kording, K. P., & Konig, P. (2003). Learning the nonlinearity of neurons from natural visual stimuli. Neural Comput, 15(8), 1751-9. doi:10.1162/08997660360675026
Kayser, Christoph, Kording, K. P., and Konig, P. 2003. “Learning the nonlinearity of neurons from natural visual stimuli”. Neural Comput 15 (8): 1751-9.
Kayser, C., Kording, K. P., and Konig, P. (2003). Learning the nonlinearity of neurons from natural visual stimuli. Neural Comput 15, 1751-9.
Kayser, C., Kording, K.P., & Konig, P., 2003. Learning the nonlinearity of neurons from natural visual stimuli. Neural Comput, 15(8), p 1751-9.
C. Kayser, K.P. Kording, and P. Konig, “Learning the nonlinearity of neurons from natural visual stimuli”, Neural Comput, vol. 15, 2003, pp. 1751-9.
Kayser, C., Kording, K.P., Konig, P.: Learning the nonlinearity of neurons from natural visual stimuli. Neural Comput. 15, 1751-9 (2003).
Kayser, Christoph, Kording, K. P., and Konig, P. “Learning the nonlinearity of neurons from natural visual stimuli”. Neural Comput 15.8 (2003): 1751-9.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Learning Visual Spatial Pooling by Strong PCA Dimension Reduction.
Hosoya H, Hyvärinen A., Neural Comput 28(7), 2016
PMID: 27171856
Slowness and sparseness have diverging effects on complex cell learning.
Lies JP, Häfner RM, Bethge M., PLoS Comput Biol 10(3), 2014
PMID: 24603197
Relating BOLD fMRI and neural oscillations through convolution and optimal linear weighting.
Zumer JM, Brookes MJ, Stevenson CM, Francis ST, Morris PG., Neuroimage 49(2), 2010
PMID: 19778617
Transient cortical excitation at the onset of visual fixation.
Rajkai C, Lakatos P, Chen CM, Pincze Z, Karmos G, Schroeder CE., Cereb Cortex 18(1), 2008
PMID: 17494059
A maximum-likelihood interpretation for slow feature analysis.
Turner R, Sahani M., Neural Comput 19(4), 2007
PMID: 17348772
Complex cell pooling and the statistics of natural images.
Hyvärinen A, Köster U., Network 18(2), 2007
PMID: 17852755
V1 non-linear properties emerge from local-to-global non-linear ICA.
Malo J, Gutiérrez J., Network 17(1), 2006
PMID: 16613796
A model of the ventral visual system based on temporal stability and local memory.
Wyss R, König P, Verschure PF., PLoS Biol 4(5), 2006
PMID: 16605306
Learning viewpoint invariant object representations using a temporal coherence principle.
Einhäuser W, Hipp J, Eggert J, Körner E, König P., Biol Cybern 93(1), 2005
PMID: 16021516
Cortical sensitivity to visual features in natural scenes.
Felsen G, Touryan J, Han F, Dan Y., PLoS Biol 3(10), 2005
PMID: 16171408

23 References

Daten bereitgestellt von Europe PubMed Central.

Spatiotemporal energy models for the perception of motion.
Adelson EH, Bergen JR., J Opt Soc Am A 2(2), 1985
PMID: 3973762
Neural mechanisms for processing binocular information I. Simple cells.
Anzai A, Ohzawa I, Freeman RD., J. Neurophysiol. 82(2), 1999
PMID: 10444685

AUTHOR UNKNOWN, 0
Learning the invariance properties of complex cells from their responses to natural stimuli.
Einhauser W, Kayser C, Konig P, Kording KP., Eur. J. Neurosci. 15(3), 2002
PMID: 11876775
Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain.
Escabi MA, Schreiner CE., J. Neurosci. 22(10), 2002
PMID: 12019330

AUTHOR UNKNOWN, 0
Computational subunits of visual cortical neurons revealed by artificial neural networks.
Lau B, Stanley GB, Dan Y., Proc. Natl. Acad. Sci. U.S.A. 99(13), 2002
PMID: 12060706

AUTHOR UNKNOWN, 0
Receptive field organization of complex cells in the cat's striate cortex.
Movshon JA, Thompson ID, Tolhurst DJ., J. Physiol. (Lond.) 283(), 1978
PMID: 722592

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency.
Schiller PH, Finlay BL, Volman SF., J. Neurophysiol. 39(6), 1976
PMID: 825623
Natural image statistics and neural representation.
Simoncelli EP, Olshausen BA., Annu. Rev. Neurosci. 24(), 2001
PMID: 11520932
Classifying simple and complex cells on the basis of response modulation.
Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, Bonds AB., Vision Res. 31(7-8), 1991
PMID: 1909826
Slow feature analysis: unsupervised learning of invariances.
Wiskott L, Sejnowski TJ., Neural Comput 14(4), 2002
PMID: 11936959
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 14511511
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche