Spatial representations of temporal and spectral sound cues in human auditory cortex

Herdener M, Esposito F, Scheffler K, Schneider P, Logothetis NK, Uludag K, Kayser C (2013)
Cortex 49(10): 2822-33.

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Herdener, M.; Esposito, F.; Scheffler, K.; Schneider, P.; Logothetis, N. K.; Uludag, K.; Kayser, ChristophUniBi
Erscheinungsjahr
2013
Zeitschriftentitel
Cortex
Band
49
Ausgabe
10
Seite(n)
2822-33
ISBN
1973-8102 (Electronic) 0010-9452 (Linking)
ISSN
0010-9452
Page URI
https://pub.uni-bielefeld.de/record/2914172

Zitieren

Herdener M, Esposito F, Scheffler K, et al. Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex. 2013;49(10):2822-33.
Herdener, M., Esposito, F., Scheffler, K., Schneider, P., Logothetis, N. K., Uludag, K., & Kayser, C. (2013). Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex, 49(10), 2822-33. doi:10.1016/j.cortex.2013.04.003
Herdener, M., Esposito, F., Scheffler, K., Schneider, P., Logothetis, N. K., Uludag, K., and Kayser, C. (2013). Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex 49, 2822-33.
Herdener, M., et al., 2013. Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex, 49(10), p 2822-33.
M. Herdener, et al., “Spatial representations of temporal and spectral sound cues in human auditory cortex”, Cortex, vol. 49, 2013, pp. 2822-33.
Herdener, M., Esposito, F., Scheffler, K., Schneider, P., Logothetis, N.K., Uludag, K., Kayser, C.: Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex. 49, 2822-33 (2013).
Herdener, M., Esposito, F., Scheffler, K., Schneider, P., Logothetis, N. K., Uludag, K., and Kayser, Christoph. “Spatial representations of temporal and spectral sound cues in human auditory cortex”. Cortex 49.10 (2013): 2822-33.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identifying musical pieces from fMRI data using encoding and decoding models.
Hoefle S, Engel A, Basilio R, Alluri V, Toiviainen P, Cagy M, Moll J., Sci Rep 8(1), 2018
PMID: 29396524
Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex.
Moerel M, De Martino F, Uğurbil K, Formisano E, Yacoub E., J Neurosci 38(36), 2018
PMID: 30185539
Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music.
Barrett FS, Preller KH, Herdener M, Janata P, Vollenweider FX., Cereb Cortex 28(11), 2018
PMID: 29028939
Tonotopic maps in human auditory cortex using arterial spin labeling.
Gardumi A, Ivanov D, Havlicek M, Formisano E, Uludağ K., Hum Brain Mapp 38(3), 2017
PMID: 27790786
Cortical representation of different taste modalities on the gustatory cortex: A pilot study.
Prinster A, Cantone E, Verlezza V, Magliulo M, Sarnelli G, Iengo M, Cuomo R, Di Salle F, Esposito F., PLoS One 12(12), 2017
PMID: 29281722
Functional Topography of Human Auditory Cortex.
Leaver AM, Rauschecker JP., J Neurosci 36(4), 2016
PMID: 26818527
Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations.
Webster PJ, Skipper-Kallal LM, Frum CA, Still HN, Ward BD, Lewis JW., Front Neurosci 10(), 2016
PMID: 28111538
Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli.
Hullett PW, Hamilton LS, Mesgarani N, Schreiner CE, Chang EF., J Neurosci 36(6), 2016
PMID: 26865624
Maps of the Auditory Cortex.
Brewer AA, Barton B., Annu Rev Neurosci 39(), 2016
PMID: 27145914
Whispering - The hidden side of auditory communication.
Frühholz S, Trost W, Grandjean D., Neuroimage 142(), 2016
PMID: 27530550
The topography of frequency and time representation in primate auditory cortices.
Baumann S, Joly O, Rees A, Petkov CI, Sun L, Thiele A, Griffiths TD., Elife 4(), 2015
PMID: 25590651
Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia.
Yuskaitis CJ, Parviz M, Loui P, Wan CY, Pearl PL., Curr Neurol Neurosci Rep 15(8), 2015
PMID: 26092314
Neuroimaging paradigms for tonotopic mapping (II): the influence of acquisition protocol.
Langers DR, Sanchez-Panchuelo RM, Francis ST, Krumbholz K, Hall DA., Neuroimage 100(), 2014
PMID: 25067814
Neuroimaging paradigms for tonotopic mapping (I): the influence of sound stimulus type.
Langers DR, Krumbholz K, Bowtell RW, Hall DA., Neuroimage 100(), 2014
PMID: 25069046
An anatomical and functional topography of human auditory cortical areas.
Moerel M, De Martino F, Formisano E., Front Neurosci 8(), 2014
PMID: 25120426
Sustained selective attention to competing amplitude-modulations in human auditory cortex.
Riecke L, Scharke W, Valente G, Gutschalk A., PLoS One 9(9), 2014
PMID: 25259525
Hierarchical organization of speech perception in human auditory cortex.
Humphries C, Sabri M, Lewis K, Liebenthal E., Front Neurosci 8(), 2014
PMID: 25565939

71 References

Daten bereitgestellt von Europe PubMed Central.

Orthogonal acoustic dimensions define auditory field maps in human cortex.
Barton B, Venezia JH, Saberi K, Hickok G, Brewer AA., Proc. Natl. Acad. Sci. U.S.A. 109(50), 2012
PMID: 23188798
Orthogonal representation of sound dimensions in the primate midbrain.
Baumann S, Griffiths TD, Sun L, Petkov CI, Thiele A, Rees A., Nat. Neurosci. 14(4), 2011
PMID: 21378972
Neural coding of periodicity in marmoset auditory cortex.
Bendor D, Wang X., J. Neurophysiol. 103(4), 2010
PMID: 20147419
Hierarchical and asymmetric temporal sensitivity in human auditory cortices.
Boemio A, Fromm S, Braun A, Poeppel D., Nat. Neurosci. 8(3), 2005
PMID: 15723061

Bregman, 1990
Evidence for pitch chroma mapping in human auditory cortex
Briley, Cerebral Cortex (), 2012
The natural statistics of audiovisual speech.
Chandrasekaran C, Trubanova A, Stillittano S, Caplier A, Ghazanfar AA., PLoS Comput. Biol. 5(7), 2009
PMID: 19609344
Functional correlates of the anterolateral processing hierarchy in human auditory cortex.
Chevillet M, Riesenhuber M, Rauschecker JP., J. Neurosci. 31(25), 2011
PMID: 21697384
Human primary auditory cortex follows the shape of Heschl's gyrus
Da, Journal of Neuroscience 31(40), 2011
Volumetric vs. surface-based alignment for localization of auditory cortex activation.
Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR., Neuroimage 26(4), 2005
PMID: 15893476
In vivo functional and myeloarchitectonic mapping of human primary auditory areas.
Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N., J. Neurosci. 32(46), 2012
PMID: 23152594
Effect of temporal envelope smearing on speech reception.
Drullman R, Festen JM, Plomp R., J. Acoust. Soc. Am. 95(2), 1994
PMID: 8132899
A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.
Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K., Neuroimage 25(4), 2005
PMID: 15850749
The modulation transfer function for speech intelligibility.
Elliott TM, Theunissen FE., PLoS Comput. Biol. 5(3), 2009
PMID: 19266016
Retinotopic organization in human visual cortex and the spatial precision of functional MRI.
Engel SA, Glover GH, Wandell BA., Cereb. Cortex 7(2), 1997
PMID: 9087826
fMRI of human visual cortex.
Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN., Nature 369(6481), 1994
PMID: 8031403
Mirror-symmetric tonotopic maps in human primary auditory cortex.
Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R., Neuron 40(4), 2003
PMID: 14622588
Endogenous cortical rhythms determine cerebral specialization for speech perception and production.
Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H., Neuron 56(6), 2007
PMID: 18093532
Representation of the temporal envelope of sounds in the human brain.
Giraud AL, Lorenzi C, Ashburner J, Wable J, Johnsrude I, Frackowiak R, Kleinschmidt A., J. Neurophysiol. 84(3), 2000
PMID: 10980029
Tonotopic organization of human auditory cortex.
Humphries C, Liebenthal E, Binder JR., Neuroimage 50(3), 2010
PMID: 20096790
Spatial organization of repetition rate processing in cat anterior auditory field
Imaizumi, Hearing Research 280(1–2), 2011
Neural processing of amplitude-modulated sounds.
Joris PX, Schreiner CE, Rees A., Physiol. Rev. 84(2), 2004
PMID: 15044682
Subdivisions of auditory cortex and processing streams in primates.
Kaas JH, Hackett TA., Proc. Natl. Acad. Sci. U.S.A. 97(22), 2000
PMID: 11050211
Computational maps in the brain.
Knudsen EI, du Lac S, Esterly SD., Annu. Rev. Neurosci. 10(), 1987
PMID: 3551761
The spectrotemporal filter mechanism of auditory selective attention.
Lakatos P, Musacchia G, O'Connel MN, Falchier AY, Javitt DC, Schroeder CE., Neuron 77(4), 2013
PMID: 23439126
Human voice perception.
Latinus M, Belin P., Curr. Biol. 21(4), 2011
PMID: 21334289
Representation of cochlea within primary auditory cortex in the cat.
Merzenich MM, Knight PL, Roth GL., J. Neurophysiol. 38(2), 1975
PMID: 1092814
The perception of repeated bursts of noise
Miller, Journal of the Acoustical Society of America 20(2), 1948

Moore, 2003
Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system.
Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K., Neuroimage 13(4), 2001
PMID: 11305897
Responses of auditory cortex to complex stimuli: functional organization revealed using intrinsic optical signals.
Nelken I, Bizley JK, Nodal FR, Ahmed B, King AJ, Schnupp JW., J. Neurophysiol. 99(4), 2008
PMID: 18272880
Tonotopic organization of the auditory cortex: pitch versus frequency representation.
Pantev C, Hoke M, Lutkenhoner B, Lehnertz K., Science 246(4929), 1989
PMID: 2814476
Sensory neural codes using multiplexed temporal scales.
Panzeri S, Brunel N, Logothetis NK, Kayser C., Trends Neurosci. 33(3), 2010
PMID: 20045201
Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
Penfield, Brain 37(), 1937
Functional imaging reveals numerous fields in the monkey auditory cortex.
Petkov CI, Kayser C, Augath M, Logothetis NK., PLoS Biol. 4(7), 2006
PMID: 16774452
Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI.
Petkov CI, Kayser C, Augath M, Logothetis NK., Magn Reson Imaging 27(8), 2009
PMID: 19269764

Plack, 2005
The lower limit of melodic pitch.
Pressnitzer D, Patterson RD, Krumbholz K., J. Acoust. Soc. Am. 109(5 Pt 1), 2001
PMID: 11386559
Probabilistic mapping and volume measurement of human primary auditory cortex.
Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K., Neuroimage 13(4), 2001
PMID: 11305896
Hearing illusory sounds in noise: sensory-perceptual transformations in primary auditory cortex.
Riecke L, van Opstal AJ, Goebel R, Formisano E., J. Neurosci. 27(46), 2007
PMID: 18003848
Temporal information in speech: Acoustic, auditory and linguistic aspects
Rosen, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 336(1278), 1992
Coding of melodic gestalt in human auditory cortex
Schindler, Cerebral Cortex (), 2012
Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task.
Schmidt CF, Zaehle T, Meyer M, Geiser E, Boesiger P, Jancke L., Hum Brain Mapp 29(1), 2008
PMID: 17318832
Is it tonotopy after all?
Schonwiesner M, von Cramon DY, Rubsamen R., Neuroimage 17(3), 2002
PMID: 12414256
Auditory cortex mapmaking: principles, projections, and plasticity.
Schreiner CE, Winer JA., Neuron 56(2), 2007
PMID: 17964251
Low-frequency neuronal oscillations as instruments of sensory selection.
Schroeder CE, Lakatos P., Trends Neurosci. 32(1), 2008
PMID: 19012975
Gamma band pitch responses in human auditory cortex measured with magnetoencephalography.
Sedley W, Teki S, Kumar S, Overath T, Barnes GR, Griffiths TD., Neuroimage 59(2), 2011
PMID: 21925281
Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.
Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K., Neuroimage 29(3), 2005
PMID: 16253522
Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging.
Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB., Science 268(5212), 1995
PMID: 7754376
Speech recognition with primarily temporal cues.
Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M., Science 270(5234), 1995
PMID: 7569981
Modulation spectra of natural sounds and ethological theories of auditory processing.
Singh NC, Theunissen FE., J. Acoust. Soc. Am. 114(6 Pt 1), 2003
PMID: 14714819
Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity.
Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM., J. Neurophysiol. 91(3), 2003
PMID: 14614108
Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging.
Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP., J Cogn Neurosci 13(1), 2001
PMID: 11224904
Functional maps of human auditory cortex: effects of acoustic features and attention.
Woods DL, Stecker GC, Rinne T, Herron TJ, Cate AD, Yund EW, Liao I, Kang X., PLoS ONE 4(4), 2009
PMID: 19365552
The coordinated mapping of visual space and response features in visual cortex.
Yu H, Farley BJ, Jin DZ, Sur M., Neuron 47(2), 2005
PMID: 16039568
Spectral and temporal processing in human auditory cortex.
Zatorre RJ, Belin P., Cereb. Cortex 11(10), 2001
PMID: 11549617

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23706955
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche