Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency

Gleiss S, Kayser C (2014)
Neuropsychologia 53: 84-93.

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Erscheinungsjahr
2014
Zeitschriftentitel
Neuropsychologia
Band
53
Seite(n)
84-93
ISBN
1873-3514 (Electronic) 0028-3932 (Linking)
ISSN
0028-3932
Page URI
https://pub.uni-bielefeld.de/record/2914171

Zitieren

Gleiss S, Kayser C. Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency. Neuropsychologia. 2014;53:84-93.
Gleiss, S., & Kayser, C. (2014). Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency. Neuropsychologia, 53, 84-93. doi:10.1016/j.neuropsychologia.2013.11.005
Gleiss, S., and Kayser, Christoph. 2014. “Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency”. Neuropsychologia 53: 84-93.
Gleiss, S., and Kayser, C. (2014). Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency. Neuropsychologia 53, 84-93.
Gleiss, S., & Kayser, C., 2014. Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency. Neuropsychologia, 53, p 84-93.
S. Gleiss and C. Kayser, “Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency”, Neuropsychologia, vol. 53, 2014, pp. 84-93.
Gleiss, S., Kayser, C.: Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency. Neuropsychologia. 53, 84-93 (2014).
Gleiss, S., and Kayser, Christoph. “Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency”. Neuropsychologia 53 (2014): 84-93.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The intraparietal sulcus governs multisensory integration of audiovisual information based on task difficulty.
Regenbogen C, Seubert J, Johansson E, Finkelmeyer A, Andersson P, Lundström JN., Hum Brain Mapp 39(3), 2018
PMID: 29235185
Neural Oscillations Orchestrate Multisensory Processing.
Keil J, Senkowski D., Neuroscientist 24(6), 2018
PMID: 29424265
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments.
Dittrich S, Noesselt T., Front Psychol 9(), 2018
PMID: 29618999
Audio-visual interaction in visual motion detection: Synchrony versus Asynchrony.
Rosemann S, Wefel IM, Elis V, Fahle M., J Optom 10(4), 2017
PMID: 28237358
The multisensory function of the human primary visual cortex.
Murray MM, Thelen A, Thut G, Romei V, Martuzzi R, Matusz PJ., Neuropsychologia 83(), 2016
PMID: 26275965
Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.
Krebber M, Harwood J, Spitzer B, Keil J, Senkowski D., Neuroimage 117(), 2015
PMID: 26026813
Spatiotemporal Processing in Crossmodal Interactions for Perception of the External World: A Review.
Hidaka S, Teramoto W, Sugita Y., Front Integr Neurosci 9(), 2015
PMID: 26733827

96 References

Daten bereitgestellt von Europe PubMed Central.

No direction-specific bimodal facilitation for audiovisual motion detection.
Alais D, Burr D., Brain Res Cogn Brain Res 19(2), 2004
PMID: 15019714
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini, Journal of the Royal Statistical Society Series B 57(1), 1995
The Psychophysics Toolbox.
Brainard DH., Spat Vis 10(4), 1997
PMID: 9176952

AUTHOR UNKNOWN, 0
Looming signals reveal synergistic principles of multisensory integration.
Cappe C, Thelen A, Romei V, Thut G, Murray MM., J. Neurosci. 32(4), 2012
PMID: 22279203
Selective integration of auditory-visual looming cues by humans.
Cappe C, Thut G, Romei V, Murray MM., Neuropsychologia 47(4), 2008
PMID: 19041883
Auditory-visual multisensory interactions in humans: timing, topography, directionality, and sources.
Cappe C, Thut G, Romei V, Murray MM., J. Neurosci. 30(38), 2010
PMID: 20861363
Synchronous sounds enhance visual sensitivity without reducing target uncertainty.
Chen YC, Huang PC, Yeh SL, Spence C., Seeing Perceiving 24(6), 2011
PMID: 22353539
Crossmodal semantic priming by naturalistic sounds and spoken words enhances visual sensitivity
Chen, Journal of Experimental Psychology: Human Perception and Performance 37(5), 2011
Spatial organization of multisensory responses in temporal association cortex.
Dahl CD, Logothetis NK, Kayser C., J. Neurosci. 29(38), 2009
PMID: 19776278
Auditory-visual interactions in the perception of a ball's path.
Ecker AJ, Heller LM., Perception 34(1), 2005
PMID: 15773607
Ready, set, reset: stimulus-locked periodicity in behavioral performance demonstrates the consequences of cross-sensory phase reset.
Fiebelkorn IC, Foxe JJ, Butler JS, Mercier MR, Snyder AC, Molholm S., J. Neurosci. 31(27), 2011
PMID: 21734288
Cortical cross-frequency coupling predicts perceptual outcomes.
Fiebelkorn IC, Snyder AC, Mercier MR, Butler JS, Molholm S, Foxe JJ., Neuroimage 69(), 2012
PMID: 23186917
Eccentricity dependent auditory enhancement of visual stimulus detection but not discrimination
Gleiss, Frontiers in Integrative Neuroscience 7(), 2013
Oscillatory sensory selection mechanisms during intersensory attention to rhythmic auditory and visual inputs: a human electrocorticographic investigation.
Gomez-Ramirez M, Kelly SP, Molholm S, Sehatpour P, Schwartz TH, Foxe JJ., J. Neurosci. 31(50), 2011
PMID: 22171054

Green, 1966
Multimodal convergence within the intraparietal sulcus of the macaque monkey.
Guipponi O, Wardak C, Ibarrola D, Comte JC, Sappey-Marinier D, Pinede S, Ben Hamed S., J. Neurosci. 33(9), 2013
PMID: 23447621
Reaction time facilitation for horizontally moving auditory-visual stimuli.
Harrison NR, Wuerger SM, Meyer GF., J Vis 10(14), 2010
PMID: 21163957
Catching audiovisual mice: Predicting the arrival time of auditory–visual motion signals
Hofbauer, Cognitive, Affective, & Behavioral Neuroscience 4(2), 2004
Audiovisual contrast enhancement is articulated primarily via the M-pathway.
Jaekl PM, Soto-Faraco S., Brain Res. 1366(), 2010
PMID: 20940003
An oscillatory mechanism for prioritizing salient unattended stimuli.
Jensen O, Bonnefond M, VanRullen R., Trends Cogn. Sci. (Regul. Ed.) 16(4), 2012
PMID: 22436764
Do early sensory cortices integrate cross-modal information?
Kayser, Brain Structure and Function 212(), 2007
Visual modulation of neurons in auditory cortex.
Kayser C, Petkov CI, Logothetis NK., Cereb. Cortex 18(7), 2008
PMID: 18180245
On the variability of the McGurk effect: audiovisual integration depends on prestimulus brain states.
Keil J, Muller N, Ihssen N, Weisz N., Cereb. Cortex 22(1), 2011
PMID: 21625011
0 + 1 > 1: How adding noninformative sound improves performance on a visual task.
Kim R, Peters MA, Shams L., Psychol Sci 23(1), 2011
PMID: 22127367
EEG alpha oscillations: the inhibition-timing hypothesis.
Klimesch W, Sauseng P, Hanslmayr S., Brain Res Rev 53(1), 2006
PMID: 16887192
Neuronal oscillations and multisensory interaction in primary auditory cortex.
Lakatos P, Chen CM, O'Connell MN, Mills A, Schroeder CE., Neuron 53(2), 2007
PMID: 17224408
The leading sense: supramodal control of neurophysiological context by attention.
Lakatos P, O'Connell MN, Barczak A, Mills A, Javitt DC, Schroeder CE., Neuron 64(3), 2009
PMID: 19914189
Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception
Lange, Journal Neuroscience 33(7), 2013
Multisensory integration for orienting responses in humans requires the activation of the superior colliculus.
Leo F, Bertini C, di Pellegrino G, Ladavas E., Exp Brain Res 186(1), 2007
PMID: 18008066
A comparison of visual and auditory motion processing in human cerebral cortex.
Lewis JW, Beauchamp MS, DeYoe EA., Cereb. Cortex 10(9), 2000
PMID: 10982748
Improvement of visual contrast detection by a simultaneous sound.
Lippert M, Logothetis NK, Kayser C., Brain Res. 1173(), 2007
PMID: 17765208
Vision affects how fast we hear sounds move
Lopez-Moliner, Journal Vision 7(12), 2007
Nonparametric statistical testing of EEG- and MEG-data
Maris, Journal Neuroscience Methods 164(1), 2007
Neural substrates of perceptual enhancement by cross-modal spatial attention.
McDonald JJ, Teder-Salejarvi WA, Di Russo F, Hillyard SA., J Cogn Neurosci 15(1), 2003
PMID: 12590839
Involuntary orienting to sound improves visual perception.
McDonald JJ, Teder-Salejarvi WA, Hillyard SA., Nature 407(6806), 2000
PMID: 11057669
Auditory-driven phase reset in visual cortex: human electrocorticography reveals mechanisms of early multisensory integration.
Mercier MR, Foxe JJ, Fiebelkorn IC, Butler JS, Schwartz TH, Molholm S., Neuroimage 79(), 2013
PMID: 23624493
Low-level integration of auditory and visual motion signals requires spatial co-localisation
Meyer, Experimental Brain Research 166(3–4), 2005
Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study.
Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ., Brain Res Cogn Brain Res 14(1), 2002
PMID: 12063135

Moore, 2003
Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment.
Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Schroeder CE, Foxe JJ., Cereb. Cortex 15(7), 2004
PMID: 15537674
Auditory event-related response in visual cortex modulates subsequent visual responses in humans.
Naue N, Rach S, Struber D, Huster RJ, Zaehle T, Korner U, Herrmann CS., J. Neurosci. 31(21), 2011
PMID: 21613485
Uncovering the neural signature of lapsing attention: electrophysiological signals predict errors up to 20 s before they occur.
O'Connell RG, Dockree PM, Robertson IH, Bellgrove MA, Foxe JJ, Kelly SP., J. Neurosci. 29(26), 2009
PMID: 19571151
Correlations redux
Olkin, Psychological Bulletin 118(1), 1995
FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Oostenveld R, Fries P, Maris E, Schoffelen JM., Comput Intell Neurosci 2011(), 2010
PMID: 21253357
Extracting information from neuronal populations: information theory and decoding approaches
Quian, Nature Reviews Neuroscience 10(3), 2009
Sounds reset rhythms of visual cortex and corresponding human visual perception.
Romei V, Gross J, Thut G., Curr. Biol. 22(9), 2012
PMID: 22503499
Spatio-temporal frequency characteristics of intersensory components in audiovisually evoked potentials
Sakowitz, Brain research. Cognitive brain research 23(2–3), 2005
Brain oscillatory substrates of visual short-term memory capacity.
Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA, Glennon M, Gerloff C, Birbaumer N, Hummel FC., Curr. Biol. 19(21), 2009
PMID: 19913428
A shift of visual spatial attention is selectively associated with human EEG alpha activity.
Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N., Eur. J. Neurosci. 22(11), 2005
PMID: 16324126
Multimodal motion processing in area V5/MT: evidence from an artificial class of audio-visual events.
Scheef L, Boecker H, Daamen M, Fehse U, Landsberg MW, Granath DO, Mechling H, Effenberg AO., Brain Res. 1252(), 2008
PMID: 19083992
Noise alters beta-band activity in superior temporal cortex during audiovisual speech processing.
Schepers IM, Schneider TR, Hipp JF, Engel AK, Senkowski D., Neuroimage 70(), 2012
PMID: 23274182
Multisensory identification of natural objects in a two-way crossmodal priming paradigm
Schneider, Journal of Experimental Psychology 55(2), 2008
Multisensory contributions to low-level, 'unisensory' processing.
Schroeder CE, Foxe J., Curr. Opin. Neurobiol. 15(4), 2005
PMID: 16019202
Low-frequency neuronal oscillations as instruments of sensory selection
Schroeder, Trends Neuroscience 32(1), 2009
Neuronal oscillations and visual amplification of speech.
Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A., Trends Cogn. Sci. (Regul. Ed.) 12(3), 2008
PMID: 18280772
Sound alters visual motion perception.
Sekuler R, Sekuler AB, Lau R., Nature 385(6614), 1997
PMID: 9002513
Multisensory processing and oscillatory gamma responses: Effects of spatial selective attention
Senkowski, Experimental Brain Research 166(3–4), 2005
Contributions of pitch and bandwidth to sound-induced enhancement of visual cortex excitability in humans
Spierer, Cortex (), 2013
Neural correlates of multisensory integration of ecologically valid audiovisual events.
Stekelenburg JJ, Vroomen J., J Cogn Neurosci 19(12), 2007
PMID: 17892381
Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli
Stormer, Proceedings of the National Academy of Sciences of the United States of the America 106(52), 2009
Cross-modal phase reset predicts auditory task performance in humans.
Thorne JD, De Vos M, Viola FC, Debener S., J. Neurosci. 31(10), 2011
PMID: 21389240
Irrelevant visual stimuli improve auditory task performance.
Thorne JD, Debener S., Neuroreport 19(5), 2008
PMID: 18388737
The functional importance of rhythmic activity in the brain.
Thut G, Miniussi C, Gross J., Curr. Biol. 22(16), 2012
PMID: 22917517
Pip and pop: Nonspatial auditory signals improve spatial visual search
Van, Journal of Experimental Psychology: Human Perception and Performance 34(5), 2008
Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability
van, Journal of Neuroscience 28(8), 2008
Ongoing EEG Phase as a Trial-by-Trial Predictor of Perceptual and Attentional Variability.
Vanrullen R, Busch NA, Drewes J, Dubois J., Front Psychol 2(), 2011
PMID: 21716580
Top-down control in contour grouping.
Volberg G, Wutz A, Greenlee MW., PLoS ONE 8(1), 2013
PMID: 23326575
Top-down processing mediated by interareal synchronization
von, Proceedings of the National Academy of Sciences of the United States of the America 97(26), 2000
Selective theta-synchronization of choice-relevant information subserves goal-directed behavior.
Womelsdorf T, Vinck M, Leung LS, Everling S., Front Hum Neurosci 4(), 2010
PMID: 21119780
The integration of auditory and visual motion signals at threshold
Wuerger, Perception, & Psychophysics 65(8), 2003
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24262657
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche