Quantum dynamics of H-2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling

Mondelo-Martell M, Huarte-Larranaga F, Manthe U (2017)
JOURNAL OF CHEMICAL PHYSICS 147(8): 084103.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
Quantum confinement effects are known to affect the behavior of molecules adsorbed in nanostructured materials. In order to study these effects on the transport of a single molecule through a nanotube, we present a quantum dynamics study on the diffusion of H-2 in a narrow (8,0) carbon nanotube in the low pressure limit. Transmission coefficients for the elementary step of the transport process are calculated using the flux correlation function approach and diffusion rates are obtained using the single hopping model. The different time scales associated with the motion in the confined coordinates and the motion along the nanotube's axis are utilized to develop an efficient and numerically exact approach, in which a diabatic basis describing the fast motion in the confined coordinate is employed. Furthermore, an adiabatic approximation separating the dynamics of confined and unbound coordinates is studied. The results obtained within the adiabatic approximation agree almost perfectly with the numerically exact ones. The approaches allow us to accurately study the system's dynamics on the picosecond time scale and resolve resonance structures present in the transmission coefficients. Resonance enhanced tunneling is found to be the dominant transport mechanism at low energies. Comparison with results obtained using transition state theory shows that tunneling significantly increases the diffusion rate at T < 120 K. Published by AIP Publishing.
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF CHEMICAL PHYSICS
Band
147
Ausgabe
8
Art.-Nr.
084103
ISSN
eISSN
PUB-ID

Zitieren

Mondelo-Martell M, Huarte-Larranaga F, Manthe U. Quantum dynamics of H-2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. JOURNAL OF CHEMICAL PHYSICS. 2017;147(8): 084103.
Mondelo-Martell, M., Huarte-Larranaga, F., & Manthe, U. (2017). Quantum dynamics of H-2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. JOURNAL OF CHEMICAL PHYSICS, 147(8), 084103. doi:10.1063/1.4995550
Mondelo-Martell, M., Huarte-Larranaga, F., and Manthe, U. (2017). Quantum dynamics of H-2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. JOURNAL OF CHEMICAL PHYSICS 147:084103.
Mondelo-Martell, M., Huarte-Larranaga, F., & Manthe, U., 2017. Quantum dynamics of H-2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. JOURNAL OF CHEMICAL PHYSICS, 147(8): 084103.
M. Mondelo-Martell, F. Huarte-Larranaga, and U. Manthe, “Quantum dynamics of H-2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling”, JOURNAL OF CHEMICAL PHYSICS, vol. 147, 2017, : 084103.
Mondelo-Martell, M., Huarte-Larranaga, F., Manthe, U.: Quantum dynamics of H-2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. JOURNAL OF CHEMICAL PHYSICS. 147, : 084103 (2017).
Mondelo-Martell, Manel, Huarte-Larranaga, Fermin, and Manthe, Uwe. “Quantum dynamics of H-2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling”. JOURNAL OF CHEMICAL PHYSICS 147.8 (2017): 084103.

50 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Kinetic modelling of molecular hydrogen transport in microporous carbon materials.
Hankel M, Zhang H, Nguyen TX, Bhatia SK, Gray SK, Smith SC., Phys Chem Chem Phys 13(17), 2011
PMID: 21442120
Nanoconfined hydrides for energy storage.
Nielsen TK, Besenbacher F, Jensen TR., Nanoscale 3(5), 2011
PMID: 21387024
Molecular transport in the nanometer regime.
Beenakker JJ, Borman VD, Krylov SY., Phys. Rev. Lett. 72(4), 1994
PMID: 10056452

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Quantum effect induced reverse kinetic molecular sieving in microporous materials.
Kumar AV, Bhatia SK., Phys. Rev. Lett. 95(24), 2005
PMID: 16384395
Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns.
Tanaka H, Kanoh H, Yudasaka M, Iijima S, Kaneko K., J. Am. Chem. Soc. 127(20), 2005
PMID: 15898801

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Isotope effect on adsorbed quantum phases: diffusion of H2 and D2 in nanoporous carbon.
Contescu CI, Zhang H, Olsen RJ, Mamontov E, Morris JR, Gallego NC., Phys. Rev. Lett. 110(23), 2013
PMID: 25167516

AUTHOR UNKNOWN, 0
Hydrogen adsorbed in a metal organic framework-5: coupled translation-rotation eigenstates from quantum five-dimensional calculations.
Matanovic I, Belof JL, Space B, Sillar K, Sauer J, Eckert J, Bacic Z., J Chem Phys 137(1), 2012
PMID: 22779674
Quantum rotation of ortho and para-water encapsulated in a fullerene cage.
Beduz C, Carravetta M, Chen JY, Concistre M, Denning M, Frunzi M, Horsewill AJ, Johannessen OG, Lawler R, Lei X, Levitt MH, Li Y, Mamone S, Murata Y, Nagel U, Nishida T, Ollivier J, Rols S, Room T, Sarkar R, Turro NJ, Yang Y., Proc. Natl. Acad. Sci. U.S.A. 109(32), 2012
PMID: 22837402

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
5D quantum dynamics of the H2@SWNT system: quantitative study of the rotational-translational coupling.
Mondelo-Martell M, Huarte-Larranaga F., J Chem Phys 142(8), 2015
PMID: 25725728

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Quantum reactive scattering with a transmission-free absorbing potential.
Gonzalez-Lezana T, Rackham EJ, Manolopoulos DE., J Chem Phys 120(5), 2004
PMID: 15268364

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28863521
PubMed | Europe PMC

Suchen in

Google Scholar