Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups
Dung DH, Voll C (2017)
Transactions of the American Mathematical Society 369(9): 6327-6349.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Let G be a finitely generated nilpotent group. The representation zeta function zeta(G)(s) of G enumerates twist isoclasses of finite-dimensional irreducible complex representations of G. We prove that zeta(G)(s) has rational abscissa of convergence alpha(G) and may be meromorphically continued to the left of alpha(G) and that, on the line {s is an element of C vertical bar Re(s) = alpha(G)}, the continued function is holomorphic except for a pole at s = alpha(G). A Tauberian theorem yields a precise asymptotic result on the representation growth of G in terms of the position and order of this pole. We obtain these results as a consequence of a result establishing uniform analytic properties of representation zeta functions of torsion-free finitely generated nilpotent groups of the form G(O), where G is a unipotent group scheme defined in terms of a nilpotent Lie lattice over the ring O of integers of a number field. This allows us to show, in particular, that the abscissae of convergence of the representation zeta functions of such groups and their pole orders are invariants of G, independent of O.
Stichworte
Finitely generated nilpotent groups;
representation zeta functions;
Kirillov orbit method;
p-adic integrals
Erscheinungsjahr
2017
Zeitschriftentitel
Transactions of the American Mathematical Society
Band
369
Ausgabe
9
Seite(n)
6327-6349
ISSN
0002-9947
eISSN
1088-6850
Page URI
https://pub.uni-bielefeld.de/record/2913975
Zitieren
Dung DH, Voll C. Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups. Transactions of the American Mathematical Society . 2017;369(9):6327-6349.
Dung, D. H., & Voll, C. (2017). Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups. Transactions of the American Mathematical Society , 369(9), 6327-6349. doi:10.1090/tran/6879
Dung, Duong Hoang, and Voll, Christopher. 2017. “Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups”. Transactions of the American Mathematical Society 369 (9): 6327-6349.
Dung, D. H., and Voll, C. (2017). Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups. Transactions of the American Mathematical Society 369, 6327-6349.
Dung, D.H., & Voll, C., 2017. Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups. Transactions of the American Mathematical Society , 369(9), p 6327-6349.
D.H. Dung and C. Voll, “Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups”, Transactions of the American Mathematical Society , vol. 369, 2017, pp. 6327-6349.
Dung, D.H., Voll, C.: Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups. Transactions of the American Mathematical Society . 369, 6327-6349 (2017).
Dung, Duong Hoang, and Voll, Christopher. “Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups”. Transactions of the American Mathematical Society 369.9 (2017): 6327-6349.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in