Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle

Müller C, Vogel H, Heckel DG (2017)
Molecular Ecoogy 26(22): 6370-6383.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Müller, CarolineUniBi; Vogel, Heiko; Heckel, David G.
Abstract / Bemerkung
Oligophagous herbivores must adjust their enzymatic machinery to the different host plant species they consume. If different hosts are used from one generation to the next, adaptation may be highly plastic, while if a single host is used over several generations there may be a longer-term response due to natural selection. Using an experimental evolutionary approach, we investigated effects of long-term experience versus short-term responses to different host plants in the oligophagous mustard leaf beetle Phaedon cochleariae. After 26 generations of continuous feeding on either Brassica rapa, Nasturtium officinale or Sinapis alba, freshly hatched larvae were kept on these plants or moved to one of the other host plants for ten days. Global transcriptional patterns as shown by microarrays revealed that between 1% and 16.1% of all 25,227 putative genes were differentially expressed in these treatments in comparison to the control line constantly feeding on B. rapa. A shift back from S. alba to B. rapa caused the largest changes in gene transcription and may thus represent the harshest conditions. Infection rates with a gregarine parasite were intermediate in all lines that were constantly kept on one host, but much lower or higher when short-term shifts to other host plants occurred. In conclusion, transcriptional plasticity in genes related to metabolism, digestion and general cellular processes plays a key role in long- and short-term responses of the beetle to changing host plant conditions, whereby the specific conditions also affect the interactions between the beetle host and its gregarine parasite.
Erscheinungsjahr
2017
Zeitschriftentitel
Molecular Ecoogy
Band
26
Ausgabe
22
Seite(n)
6370-6383
ISSN
0962-1083
eISSN
1365-294X
Page URI
https://pub.uni-bielefeld.de/record/2913900

Zitieren

Müller C, Vogel H, Heckel DG. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Molecular Ecoogy. 2017;26(22):6370-6383.
Müller, C., Vogel, H., & Heckel, D. G. (2017). Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Molecular Ecoogy, 26(22), 6370-6383. doi:10.1111/mec.14349
Müller, Caroline, Vogel, Heiko, and Heckel, David G. 2017. “Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle”. Molecular Ecoogy 26 (22): 6370-6383.
Müller, C., Vogel, H., and Heckel, D. G. (2017). Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Molecular Ecoogy 26, 6370-6383.
Müller, C., Vogel, H., & Heckel, D.G., 2017. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Molecular Ecoogy, 26(22), p 6370-6383.
C. Müller, H. Vogel, and D.G. Heckel, “Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle”, Molecular Ecoogy, vol. 26, 2017, pp. 6370-6383.
Müller, C., Vogel, H., Heckel, D.G.: Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Molecular Ecoogy. 26, 6370-6383 (2017).
Müller, Caroline, Vogel, Heiko, and Heckel, David G. “Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle”. Molecular Ecoogy 26.22 (2017): 6370-6383.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Physiological and Evolutionary Changes in a Biological Control Agent During Prey Shifts Over Several Generations.
Chen ML, Wang T, Huang YH, Qiu BY, Li HS, Pang H., Front Physiol 9(), 2018
PMID: 30072921

72 References

Daten bereitgestellt von Europe PubMed Central.

'Species' of peptidases.
Barrett AJ, Rawlings ND., Biol. Chem. 388(11), 2007
PMID: 17976007
Immune defence strategies of generalist and specialist insect herbivores.
Barthel A, Kopka I, Vogel H, Zipfel P, Heckel DG, Groot AT., Proc. Biol. Sci. 281(1788), 2014
PMID: 24943370
Expression and characterization of a recombinant i-type lysozyme from the harlequin ladybird beetle Harmonia axyridis.
Beckert A, Wiesner J, Schmidtberg H, Lehmann R, Baumann A, Vogel H, Vilcinskas A., Insect Mol. Biol. 25(3), 2016
PMID: 26778648
Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellen).
Bukovinszky T, Gols R, Posthumus MA, Vet LE, Van Lenteren JC., J. Chem. Ecol. 31(3), 2005
PMID: 15898495
Rapidly evolving adaptations to host ecology and nutrition in the soapberry bug
Carroll, Evolutionary Ecology 12(), 1998
Phenolic compounds in Brassica vegetables.
Cartea ME, Francisco M, Soengas P, Velasco P., Molecules 16(1), 2010
PMID: 21193847
Transcriptional analysis of physiological pathways in a generalist herbivore: Responses to different host plants and plant structures by the cotton bollworm, Helicoverpa armigera
Celorio-Mancera, Entomologia Experimentalis et Applicata 144(), 2012
Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by RNA-Seq.
de la Paz Celorio-Mancera M, Wheat CW, Vogel H, Soderlind L, Janz N, Nylin S., Mol. Ecol. 22(19), 2013
PMID: 23952264
Cytochrome P450 isoforms transcriptional, larval growth and development responses to host allelochemicals in the generalist herbivore, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae)
Chandra, Current Science 111(), 2016
Cowpea bruchid midgut transcriptome response to a soybean cystatin--costs and benefits of counter-defence.
Chi YH, Salzman RA, Balfe S, Ahn JE, Sun W, Moon J, Yun DJ, Lee SY, Higgins TJ, Pittendrigh B, Murdock LL, Zhu-Salzman K., Insect Mol. Biol. 18(1), 2009
PMID: 19196350
Differential protease activity augments polyphagy in Helicoverpa armigera.
Chikate YR, Tamhane VA, Joshi RS, Gupta VS, Giri AP., Insect Mol. Biol. 22(3), 2013
PMID: 23432026
Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M., Bioinformatics 21(18), 2005
PMID: 16081474
Dendroctonus armandi (Curculionidae: Scolytinae) cytochrome P450s display tissue specificity and responses to host terpenoids.
Dai L, Ma M, Gao G, Chen H., Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 201(), 2016
PMID: 27344973
A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae.
Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbic M, Clark RM, Feyereisen R, Van Leeuwen T., Proc. Natl. Acad. Sci. U.S.A. 110(2), 2012
PMID: 23248300
The evolutionary ecology of insect resistance to plant chemicals.
Despres L, David JP, Gallet C., Trends Ecol. Evol. (Amst.) 22(6), 2007
PMID: 17324485
The gut microbiota of insects - diversity in structure and function.
Engel P, Moran NA., FEMS Microbiol. Rev. 37(5), 2013
PMID: 23692388
Differential gene expression according to race and host plant in the pea aphid.
Eyres I, Jaquiery J, Sugio A, Duvaux L, Gharbi K, Zhou JJ, Legeai F, Nelson M, Simon JC, Smadja CM, Butlin R, Ferrari J., Mol. Ecol. 25(17), 2016
PMID: 27474484
The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.
Fahey JW, Zalcmann AT, Talalay P., Phytochemistry 56(1), 2001
PMID: 11198818
Insect P450 enzymes.
Feyereisen R., Annu. Rev. Entomol. 44(), 1999
PMID: 9990722

Feyereisen, 2012
Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots.
Franta Z, Vogel H, Lehmann R, Rupp O, Goesmann A, Vilcinskas A., Biomed Res Int 2016(), 2016
PMID: 27119084
Chitinolytic enzymes: catalysis, substrate binding, and their application.
Fukamizo T., Curr. Protein Pept. Sci. 1(1), 2000
PMID: 12369923

Futuyma, 2005
Molecular mechanisms of insect adaptation to plant secondary compounds
Heidel-Fischer, Current Opinion in Insect Science 8(), 2015
Sex, offspring and carcass determine antimicrobial peptide expression in the burying beetle.
Jacobs CG, Steiger S, Heckel DG, Wielsch N, Vilcinskas A, Vogel H., Sci Rep 6(), 2016
PMID: 27139635
Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis.
Johnston PR, Rolff J., PLoS Pathog. 11(11), 2015
PMID: 26544881
Morphological and molecular characterizations of the Gregarina sp (Apicomplexa: Protozoa) parasitizing on Phaedon brassicae (Coleoptera: Chrysomelidae)
Kim, Journal of Asia-Pacific Entomology 17(), 2014
Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles.
Kirsch R, Gramzow L, Theißen G, Siegfried BD, Ffrench-Constant RH, Heckel DG, Pauchet Y., Insect Biochem. Mol. Biol. 52(), 2014
PMID: 24978610
Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle.
Kirsch R, Wielsch N, Vogel H, Svatos A, Heckel DG, Pauchet Y., BMC Genomics 13(), 2012
PMID: 23116131
The plastic response of Manduca sexta to host and non-host plants.
Koenig C, Bretschneider A, Heckel DG, Grosse-Wilde E, Hansson BS, Vogel H., Insect Biochem. Mol. Biol. 63(), 2015
PMID: 26070471
Phenolic substances in medicinal plants
Kolesnikov, Applied Biochemistry and Microbiology 37(), 2001
Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes.
Li X, Schuler MA, Berenbaum MR., Nature 419(6908), 2002
PMID: 12384696
Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics.
Li X, Schuler MA, Berenbaum MR., Annu. Rev. Entomol. 52(), 2007
PMID: 16925478
Glucosinolate Desulfation by the Phloem-Feeding Insect Bemisia tabaci.
Malka O, Shekhov A, Reichelt M, Gershenzon J, Vassao DG, Morin S., J. Chem. Ecol. 42(3), 2016
PMID: 26961756
Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae
Müller, Phytochemistry Reviews 8(), 2009
Adult beetles compensate for poor larval food conditions.
Muller T, Muller C., J. Insect Physiol. 88(), 2016
PMID: 26906247
Host plant effects on the behavioural phenotype of a Chrysomelid
MAœLLER T, CAROLINE MAœLLER ., Ecol Entomol 42(3), 2017
PMID: IND605718287
Transcriptome modulation during host shift is driven by secondary metabolites in desert Drosophila.
De Panis DN, Padro J, Furio-Tari P, Tarazona S, Milla Carmona PS, Soto IM, Dopazo H, Conesa A, Hasson E., Mol. Ecol. 25(18), 2016
PMID: 27483442
Towards an integrated understanding of gut microbiota using insects as model systems.
Pernice M, Simpson SJ, Ponton F., J. Insect Physiol. 69(), 2014
PMID: 24862156
Characterisation of imidacloprid resistance mechanisms in the brown planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae)
Puinean, Pesticide Biochemistry and Physiology 97(), 2010
Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.
Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS, Williamson MS, Bass C., PLoS Genet. 6(6), 2010
PMID: 20585623
Disarming the mustard oil bomb.
Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J., Proc. Natl. Acad. Sci. U.S.A. 99(17), 2002
PMID: 12161563
Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp.
Roy A, Walker WB 3rd, Vogel H, Chattington S, Larsson MC, Anderson P, Heckel DG, Schlyter F., Insect Biochem. Mol. Biol. 71(), 2016
PMID: 26908076
The genetic basis of host plant adaptation in the brown planthopper (Nilaparvata lugens)
Sezer, Heredity 80(), 1998
Expansion of the silkworm GMC oxidoreductase genes is associated with immunity.
Sun W, Shen YH, Yang WJ, Cao YF, Xiang ZH, Zhang Z., Insect Biochem. Mol. Biol. 42(12), 2012
PMID: 23022604
Insect personality depends on environmental conditions
Tremmel, Behavioral Ecology 24(), 2013
Transcriptome responses in herbivorous insects towards host plant and toxin feeding
Vogel, Annual Plant Reviews 47(), 2014
Evolving resistance to obesity in an insect.
Warbrick-Smith J, Behmer ST, Lee KP, Raubenheimer D, Simpson SJ., Proc. Natl. Acad. Sci. U.S.A. 103(38), 2006
PMID: 16968774
Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate.
Welte CU, de Graaf RM, van den Bosch TJ, Op den Camp HJ, van Dam NM, Jetten MS., Environ. Microbiol. 18(5), 2015
PMID: 26234684
Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
Winde I, Wittstock U., Phytochemistry 72(13), 2011
PMID: 21316065
Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host.
Wybouw N, Zhurov V, Martel C, Bruinsma KA, Hendrickx F, Grbic V, Van Leeuwen T., Mol. Ecol. 24(18), 2015
PMID: 26211543
The transcriptome response of Heliconius melpomene larvae to a novel host plant.
Yu QY, Fang SM, Zhang Z, Jiggins CD., Mol. Ecol. 25(19), 2016
PMID: 27572947
Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae).
Zhang M, Fang T, Pu G, Sun X, Zhou X, Cai Q., Pestic Biochem Physiol 107(1), 2013
PMID: 25149234
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28921776
PubMed | Europe PMC

Suchen in

Google Scholar