The effects of antimony doping on the surface structure of rutile TiO2(110)

Bechstein R, Kitta M, Schütte J, Onishi H, Kühnle A (2009)
Nanotechnology 20(26): 264003.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.43 MB
Autor*in
Bechstein, RalfUniBi; Kitta, Mitsunori; Schütte, Jens; Onishi, Hiroshi; Kühnle, AngelikaUniBi
Abstract / Bemerkung
Titanium dioxide represents a very important wide bandgap photocatalyst that is known to be sensitized to visible light by transition metal doping. Antimony doping has been demonstrated to provide photocatalytic activity when codoped with chromium at an optimum dopant ratio [Sb]/[Cr] of about 1.5. Here, the role of antimony doping on the surface structure of rutile TiO2(110) is studied using non-contact atomic force microscopy (NC-AFM) under ultra-high vacuum conditions. At first glance, the surface structure of antimony-doped TiO2(110) resembles the structure of pristine TiO2(110). However, in contrast to what is found in pristine TiO2(110), a dense layer of protruding features is observed upon antimony doping, which is tentatively ascribed to antimony-rich clusters. Moreover, homogeneously distributed holes are found on the surface, which differ in depth and shape depending on the preparation conditions. Holes with depths ranging from a few up to more than a hundred monatomic steps are observed. These holes are explained by surface segregation of antimony during annealing, as the ionic radius of Sb3+ is considerably larger than the ionic radius of Ti4+. Our finding provides an indication of why an antimony concentration larger than the optimum ratio results in decreased photocatalytic activity. Moreover, controlling annealing temperature seems to constitute a promising strategy for creating nanosized holes on TiO2 surfaces.
Erscheinungsjahr
2009
Zeitschriftentitel
Nanotechnology
Band
20
Ausgabe
26
Seite(n)
264003
ISSN
0957-4484
Page URI
https://pub.uni-bielefeld.de/record/2913842

Zitieren

Bechstein R, Kitta M, Schütte J, Onishi H, Kühnle A. The effects of antimony doping on the surface structure of rutile TiO2(110). Nanotechnology. 2009;20(26):264003.
Bechstein, R., Kitta, M., Schütte, J., Onishi, H., & Kühnle, A. (2009). The effects of antimony doping on the surface structure of rutile TiO2(110). Nanotechnology, 20(26), 264003. doi:10.1088/0957-4484/20/26/264003
Bechstein, Ralf, Kitta, Mitsunori, Schütte, Jens, Onishi, Hiroshi, and Kühnle, Angelika. 2009. “The effects of antimony doping on the surface structure of rutile TiO2(110)”. Nanotechnology 20 (26): 264003.
Bechstein, R., Kitta, M., Schütte, J., Onishi, H., and Kühnle, A. (2009). The effects of antimony doping on the surface structure of rutile TiO2(110). Nanotechnology 20, 264003.
Bechstein, R., et al., 2009. The effects of antimony doping on the surface structure of rutile TiO2(110). Nanotechnology, 20(26), p 264003.
R. Bechstein, et al., “The effects of antimony doping on the surface structure of rutile TiO2(110)”, Nanotechnology, vol. 20, 2009, pp. 264003.
Bechstein, R., Kitta, M., Schütte, J., Onishi, H., Kühnle, A.: The effects of antimony doping on the surface structure of rutile TiO2(110). Nanotechnology. 20, 264003 (2009).
Bechstein, Ralf, Kitta, Mitsunori, Schütte, Jens, Onishi, Hiroshi, and Kühnle, Angelika. “The effects of antimony doping on the surface structure of rutile TiO2(110)”. Nanotechnology 20.26 (2009): 264003.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:52Z
MD5 Prüfsumme
9c87165ce135339153493881e23b8b83


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

NC-AFM imaging of the TiO(2)(110)-(1 x 1) surface at low temperature.
Yurtsever A, Sugimoto Y, Abe M, Morita S., Nanotechnology 21(16), 2010
PMID: 20348596

17 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Electrochemical photolysis of water at a semiconductor electrode.
Fujishima A, Honda K., Nature 238(5358), 1972
PMID: 12635268

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Bechstein, 2009

AUTHOR UNKNOWN, 0
Atomic force microscope.
Binnig G, Quate CF, Gerber C., Phys. Rev. Lett. 56(9), 1986
PMID: 10033323

AUTHOR UNKNOWN, 0
Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy.
Lauritsen JV, Foster AS, Olesen GH, Christensen MC, Kuhnle A, Helveg S, Rostrup-Nielsen JR, Clausen BS, Reichling M, Besenbacher F., Nanotechnology 17(14), 2006
PMID: 19661587
Interplay between external strain and oxygen vacancies on a rutile TiO2(110) Surface.
Shu DJ, Ge ST, Wang M, Ming NB., Phys. Rev. Lett. 101(11), 2008
PMID: 18851302

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19509451
PubMed | Europe PMC

Suchen in

Google Scholar