Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

Lübbe J, Temmen M, Rode S, Rahe P, Kühnle A, Reichling M (2013)
Beilstein Journal of Nanotechnology 4: 32-44.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.48 MB
Autor/in
; ; ; ; ;
Abstract / Bemerkung
The noise of the frequency-shift signal Delta f in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Delta f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured dz, we predict d(Delta f) for specific filter settings, a given level of detection-system noise spectral density d(ds)(z) and the cantilever-thermal-noise spectral density d(th)(z). We find an excellent agreement between the calculated and measured values for d(Delta f). Furthermore, we demonstrate that thermal noise in d(Delta f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.
Stichworte
Cantilever; feedback loop; filter; noncontact atomic force microscopy; (NC-AFM); noise
Erscheinungsjahr
2013
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
4
Seite(n)
32-44
ISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2913807

Zitieren

Lübbe J, Temmen M, Rode S, Rahe P, Kühnle A, Reichling M. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology. 2013;4:32-44.
Lübbe, J., Temmen, M., Rode, S., Rahe, P., Kühnle, A., & Reichling, M. (2013). Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology, 4, 32-44. doi:10.3762/bjnano.4.4
Lübbe, J., Temmen, M., Rode, S., Rahe, P., Kühnle, A., and Reichling, M. (2013). Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology 4, 32-44.
Lübbe, J., et al., 2013. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology, 4, p 32-44.
J. Lübbe, et al., “Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy”, Beilstein Journal of Nanotechnology, vol. 4, 2013, pp. 32-44.
Lübbe, J., Temmen, M., Rode, S., Rahe, P., Kühnle, A., Reichling, M.: Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology. 4, 32-44 (2013).
Lübbe, Jannis, Temmen, Matthias, Rode, Sebastian, Rahe, Philipp, Kühnle, Angelika, and Reichling, Michael. “Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy”. Beilstein Journal of Nanotechnology 4 (2013): 32-44.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:51Z
MD5 Prüfsumme
48b400fc75cdfb8b566d2e06641d92c1

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23400758
PubMed | Europe PMC

Suchen in

Google Scholar