Determining cantilever stiffness from thermal noise

Lübbe J, Temmen M, Rahe P, Kühnle A, Reichling M (2013)
Beilstein Journal of Nanotechnology 4: 227.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 616.99 KB
Autor*in
Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Kühnle, AngelikaUniBi; Reichling, Michael
Abstract / Bemerkung
We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f(n), quality factor Q(n) and specifically the stiffness k(n) of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine kn from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.
Stichworte
AFM; cantilever; noncontact atomic force microscopy (NC-AFM); Q-factor; thermal excitation; resonance; spectral analysis; stiffness
Erscheinungsjahr
2013
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
4
Seite(n)
227
ISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2913805

Zitieren

Lübbe J, Temmen M, Rahe P, Kühnle A, Reichling M. Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology. 2013;4:227.
Lübbe, J., Temmen, M., Rahe, P., Kühnle, A., & Reichling, M. (2013). Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology, 4, 227. https://doi.org/10.3762/bjnano.4.23
Lübbe, Jannis, Temmen, Matthias, Rahe, Philipp, Kühnle, Angelika, and Reichling, Michael. 2013. “Determining cantilever stiffness from thermal noise”. Beilstein Journal of Nanotechnology 4: 227.
Lübbe, J., Temmen, M., Rahe, P., Kühnle, A., and Reichling, M. (2013). Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology 4, 227.
Lübbe, J., et al., 2013. Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology, 4, p 227.
J. Lübbe, et al., “Determining cantilever stiffness from thermal noise”, Beilstein Journal of Nanotechnology, vol. 4, 2013, pp. 227.
Lübbe, J., Temmen, M., Rahe, P., Kühnle, A., Reichling, M.: Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology. 4, 227 (2013).
Lübbe, Jannis, Temmen, Matthias, Rahe, Philipp, Kühnle, Angelika, and Reichling, Michael. “Determining cantilever stiffness from thermal noise”. Beilstein Journal of Nanotechnology 4 (2013): 227.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:51Z
MD5 Prüfsumme
40a4f8cb7e4d6f27002ba0506eb9c11e


7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols.
Huang Z, Delparastan P, Burch P, Cheng J, Cao Y, Messersmith PB., Biomater Sci 6(9), 2018
PMID: 30069570
Exploring wear at the nanoscale with circular mode atomic force microscopy.
Noel O, Vencl A, Mazeran PE., Beilstein J Nanotechnol 8(), 2017
PMID: 29354338
Understanding interferometry for micro-cantilever displacement detection.
von Schmidsfeld A, Nörenberg T, Temmen M, Reichling M., Beilstein J Nanotechnol 7(), 2016
PMID: 27547601
Noise in NC-AFM measurements with significant tip-sample interaction.
Lübbe J, Temmen M, Rahe P, Reichling M., Beilstein J Nanotechnol 7(), 2016
PMID: 28144538

19 References

Daten bereitgestellt von Europe PubMed Central.


Nyquist H., 1928

Johnson J., 1928
Thermal noise in mechanical experiments.
Saulson PR., Phys. Rev., D 42(8), 1990
PMID: 10013112
Calibration of higher eigenmode spring constants of atomic force microscope cantilevers.
Lozano JR, Kiracofe D, Melcher J, Garcia R, Raman A., Nanotechnology 21(46), 2010
PMID: 20972309

AUTHOR UNKNOWN, 0
Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.
Lubbe J, Temmen M, Rode S, Rahe P, Kuhnle A, Reichling M., Beilstein J Nanotechnol 4(), 2013
PMID: 23400758

Butt H-J, Jaschke M., 1995

Paolino P, Tiribilli B, Bellon L., 2009

Rast S, Wattinger C, Gysin U, Meyer E., 2000

Hutter J, Bechhoefer J., 1993

Cook S, Schäffer T, Chynoweth K, Wigton M, Simmonds R, Lang K., 2006

Lübbe J, Tröger L, Torbrügge S, Bechstein R, Richter C, Kühnle A, Reichling M., 2010
Quantitative measurement of short-range chemical bonding forces.
Lantz MA, Hug HJ, Hoffmann R, van Schendel PJ, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ., Science 291(5513), 2001
PMID: 11283365

Kawai S, Glatzel T, Koch S, Baratoff A, Meyer E., 2011
Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy.
Welker J, Illek E, Giessibl FJ., Beilstein J Nanotechnol 3(), 2012
PMID: 22496997

Lübbe J, Doering L, Reichling M., 2012

Giessibl F., 2000

Simon G, Heyde M, Rust H-P., 2007

Melcher J, Hu S, Raman A., 2007
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23616942
PubMed | Europe PMC

Suchen in

Google Scholar