Determining cantilever stiffness from thermal noise
Lübbe J, Temmen M, Rahe P, Kühnle A, Reichling M (2013)
Beilstein Journal of Nanotechnology 4: 227.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
BeilsteinJNano_4_2013_Lübbe_b.pdf
616.99 KB
Autor*in
Lübbe, Jannis;
Temmen, Matthias;
Rahe, Philipp;
Kühnle, AngelikaUniBi;
Reichling, Michael
Einrichtung
Abstract / Bemerkung
We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f(n), quality factor Q(n) and specifically the stiffness k(n) of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine kn from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.
Stichworte
AFM;
cantilever;
noncontact atomic force microscopy (NC-AFM);
Q-factor;
thermal excitation;
resonance;
spectral analysis;
stiffness
Erscheinungsjahr
2013
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
4
Seite(n)
227
Urheberrecht / Lizenzen
ISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2913805
Zitieren
Lübbe J, Temmen M, Rahe P, Kühnle A, Reichling M. Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology. 2013;4:227.
Lübbe, J., Temmen, M., Rahe, P., Kühnle, A., & Reichling, M. (2013). Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology, 4, 227. https://doi.org/10.3762/bjnano.4.23
Lübbe, Jannis, Temmen, Matthias, Rahe, Philipp, Kühnle, Angelika, and Reichling, Michael. 2013. “Determining cantilever stiffness from thermal noise”. Beilstein Journal of Nanotechnology 4: 227.
Lübbe, J., Temmen, M., Rahe, P., Kühnle, A., and Reichling, M. (2013). Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology 4, 227.
Lübbe, J., et al., 2013. Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology, 4, p 227.
J. Lübbe, et al., “Determining cantilever stiffness from thermal noise”, Beilstein Journal of Nanotechnology, vol. 4, 2013, pp. 227.
Lübbe, J., Temmen, M., Rahe, P., Kühnle, A., Reichling, M.: Determining cantilever stiffness from thermal noise. Beilstein Journal of Nanotechnology. 4, 227 (2013).
Lübbe, Jannis, Temmen, Matthias, Rahe, Philipp, Kühnle, Angelika, and Reichling, Michael. “Determining cantilever stiffness from thermal noise”. Beilstein Journal of Nanotechnology 4 (2013): 227.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
BeilsteinJNano_4_2013_Lübbe_b.pdf
616.99 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:51Z
MD5 Prüfsumme
40a4f8cb7e4d6f27002ba0506eb9c11e
Daten bereitgestellt von European Bioinformatics Institute (EBI)
7 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time.
Bhat SV, Sultana T, Körnig A, McGrath S, Shahina Z, Dahms TES., Sci Rep 8(1), 2018
PMID: 29844489
Bhat SV, Sultana T, Körnig A, McGrath S, Shahina Z, Dahms TES., Sci Rep 8(1), 2018
PMID: 29844489
Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols.
Huang Z, Delparastan P, Burch P, Cheng J, Cao Y, Messersmith PB., Biomater Sci 6(9), 2018
PMID: 30069570
Huang Z, Delparastan P, Burch P, Cheng J, Cao Y, Messersmith PB., Biomater Sci 6(9), 2018
PMID: 30069570
Exploring wear at the nanoscale with circular mode atomic force microscopy.
Noel O, Vencl A, Mazeran PE., Beilstein J Nanotechnol 8(), 2017
PMID: 29354338
Noel O, Vencl A, Mazeran PE., Beilstein J Nanotechnol 8(), 2017
PMID: 29354338
Daniell method for power spectral density estimation in atomic force microscopy.
Labuda A., Rev Sci Instrum 87(3), 2016
PMID: 27036781
Labuda A., Rev Sci Instrum 87(3), 2016
PMID: 27036781
Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition.
Söngen H, Nalbach M, Adam H, Kühnle A., Rev Sci Instrum 87(6), 2016
PMID: 27370456
Söngen H, Nalbach M, Adam H, Kühnle A., Rev Sci Instrum 87(6), 2016
PMID: 27370456
Understanding interferometry for micro-cantilever displacement detection.
von Schmidsfeld A, Nörenberg T, Temmen M, Reichling M., Beilstein J Nanotechnol 7(), 2016
PMID: 27547601
von Schmidsfeld A, Nörenberg T, Temmen M, Reichling M., Beilstein J Nanotechnol 7(), 2016
PMID: 27547601
Noise in NC-AFM measurements with significant tip-sample interaction.
Lübbe J, Temmen M, Rahe P, Reichling M., Beilstein J Nanotechnol 7(), 2016
PMID: 28144538
Lübbe J, Temmen M, Rahe P, Reichling M., Beilstein J Nanotechnol 7(), 2016
PMID: 28144538
19 References
Daten bereitgestellt von Europe PubMed Central.
Nyquist H., 1928
Johnson J., 1928
Calibration of higher eigenmode spring constants of atomic force microscope cantilevers.
Lozano JR, Kiracofe D, Melcher J, Garcia R, Raman A., Nanotechnology 21(46), 2010
PMID: 20972309
Lozano JR, Kiracofe D, Melcher J, Garcia R, Raman A., Nanotechnology 21(46), 2010
PMID: 20972309
AUTHOR UNKNOWN, 0
Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.
Lubbe J, Temmen M, Rode S, Rahe P, Kuhnle A, Reichling M., Beilstein J Nanotechnol 4(), 2013
PMID: 23400758
Lubbe J, Temmen M, Rode S, Rahe P, Kuhnle A, Reichling M., Beilstein J Nanotechnol 4(), 2013
PMID: 23400758
Butt H-J, Jaschke M., 1995
Paolino P, Tiribilli B, Bellon L., 2009
Rast S, Wattinger C, Gysin U, Meyer E., 2000
Hutter J, Bechhoefer J., 1993
Cook S, Schäffer T, Chynoweth K, Wigton M, Simmonds R, Lang K., 2006
Lübbe J, Tröger L, Torbrügge S, Bechstein R, Richter C, Kühnle A, Reichling M., 2010
Quantitative measurement of short-range chemical bonding forces.
Lantz MA, Hug HJ, Hoffmann R, van Schendel PJ, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ., Science 291(5513), 2001
PMID: 11283365
Lantz MA, Hug HJ, Hoffmann R, van Schendel PJ, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ., Science 291(5513), 2001
PMID: 11283365
Kawai S, Glatzel T, Koch S, Baratoff A, Meyer E., 2011
Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy.
Welker J, Illek E, Giessibl FJ., Beilstein J Nanotechnol 3(), 2012
PMID: 22496997
Welker J, Illek E, Giessibl FJ., Beilstein J Nanotechnol 3(), 2012
PMID: 22496997
Lübbe J, Doering L, Reichling M., 2012
Giessibl F., 2000
Simon G, Heyde M, Rust H-P., 2007
Melcher J, Hu S, Raman A., 2007
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23616942
PubMed | Europe PMC
Suchen in