Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility
Hauke CM, Bechstein R, Kittelmann M, Storz C, Kilbinger AFM, Rahe P, Kühnle A (2013)
ACS Nano 7: 5491.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
ACSNano_7_2013_Hauke.pdf
1.76 MB
Autor*in
Hauke, Christopher M.;
Bechstein, RalfUniBi;
Kittelmann, Markus;
Storz, Christof;
Kilbinger, Andreas F. M.;
Rahe, Philipp;
Kühnle, AngelikaUniBi
Einrichtung
Abstract / Bemerkung
Molecular self-assembly on surfaces is dictated by the delicate balance between intermolecular and molecule-surface interactions. For many insulating surfaces, however, the molecule-surface interactions are weak and rather unspecific. Enhancing these interactions, on the other hand, often puts a severe limit on the achievable structural variety. To grasp the full potential of molecular self-assembly on these application-relevant substrates, therefore, requires strategies for anchoring the molecular building blocks toward the surface in a way that maintains flexibility in terms of intermolecular interaction and relative molecule orientation. Here, we report the design of a site-specific anchor functionality that provides strong anchoring toward the surface, resulting in a well-defined adsorption position. At the same time, the anchor does not significantly interfere with the intermolecular interaction, ensuring structural flexibility. We demonstrate the success of this approach with three molecules from the class of shape-persistent oligo(p-benzamide)s adsorbed onto the calcite(10.4) surface. These molecules have the same aromatic backbone with iodine substituents, providing the same basic adsorption mechanism to the surface calcium cations. The backbone is equipped with different functional groups. These have a negligible influence on the molecular adsorption on the surface but significantly change the Intermolecular interaction. We show that distinctly different molecular structures are obtained that wet the surface due to the strong linker while maintaining variability in the relative molecular orientation. With this study, we thus provide a versatile strategy for increasing the structural richness in molecular self-assembly on Insulating substrates.
Stichworte
self-assembly;
bulk insulator;
substrate templating;
NC-AFM;
electrostatic anchoring
Erscheinungsjahr
2013
Zeitschriftentitel
ACS Nano
Band
7
Seite(n)
5491
Urheberrecht / Lizenzen
ISSN
1936-0851
Page URI
https://pub.uni-bielefeld.de/record/2913803
Zitieren
Hauke CM, Bechstein R, Kittelmann M, et al. Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility. ACS Nano. 2013;7:5491.
Hauke, C. M., Bechstein, R., Kittelmann, M., Storz, C., Kilbinger, A. F. M., Rahe, P., & Kühnle, A. (2013). Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility. ACS Nano, 7, 5491. https://doi.org/10.1021/nn401589u
Hauke, Christopher M., Bechstein, Ralf, Kittelmann, Markus, Storz, Christof, Kilbinger, Andreas F. M., Rahe, Philipp, and Kühnle, Angelika. 2013. “Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility”. ACS Nano 7: 5491.
Hauke, C. M., Bechstein, R., Kittelmann, M., Storz, C., Kilbinger, A. F. M., Rahe, P., and Kühnle, A. (2013). Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility. ACS Nano 7, 5491.
Hauke, C.M., et al., 2013. Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility. ACS Nano, 7, p 5491.
C.M. Hauke, et al., “Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility”, ACS Nano, vol. 7, 2013, pp. 5491.
Hauke, C.M., Bechstein, R., Kittelmann, M., Storz, C., Kilbinger, A.F.M., Rahe, P., Kühnle, A.: Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility. ACS Nano. 7, 5491 (2013).
Hauke, Christopher M., Bechstein, Ralf, Kittelmann, Markus, Storz, Christof, Kilbinger, Andreas F. M., Rahe, Philipp, and Kühnle, Angelika. “Controlling Molecular Self-Assembly on an Insulating Surface by Rationally Designing an Efficient Anchor Functionality That Maintains Structural Flexibility”. ACS Nano 7 (2013): 5491.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
ACSNano_7_2013_Hauke.pdf
1.76 MB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:51Z
MD5 Prüfsumme
557c5618676be6b1db25b9e84f751167
Daten bereitgestellt von European Bioinformatics Institute (EBI)
2 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Adsorption and migration of single metal atoms on the calcite (10.4) surface.
Pinto H, Haapasilta V, Lokhandwala M, Öberg S, Foster AS., J Phys Condens Matter 29(13), 2017
PMID: 28198353
Pinto H, Haapasilta V, Lokhandwala M, Öberg S, Foster AS., J Phys Condens Matter 29(13), 2017
PMID: 28198353
Calculating free energies of organic molecules on insulating substrates.
Gaberle J, Gao DZ, Shluger AL., Beilstein J Nanotechnol 8(), 2017
PMID: 28462068
Gaberle J, Gao DZ, Shluger AL., Beilstein J Nanotechnol 8(), 2017
PMID: 28462068
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23659365
PubMed | Europe PMC
Suchen in