Diacetylene polymerization on a bulk insulator surface

Richter A, Haapasilta V, Venturini C, Bechstein R, Gourdon A, Foster AS, Kühnle A (2017)
Physical Chemistry Chemical Physics 19(23): 15172-15176.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 4.70 MB
Richter, A.; Haapasilta, Ville; Venturini, C.; Bechstein, RalfUniBi; Gourdon, André; Foster, Adam S.; Kühnle, AngelikaUniBi
Abstract / Bemerkung
Molecular electronics has great potential to surpass known limitations in conventional silicon-based technologies. The development of molecular electronics devices requires reliable strategies for connecting functional molecules by wire-like structures. To this end, diacetylene polymerization has been discussed as a very promising approach for contacting single molecules with a conductive polymer chain. A major challenge for future device fabrication is transferring this method to bulk insulator surfaces, which are mandatory to decouple the electronic structure of the functional molecules from the support surface. Here, we provide experimental evidence for diacetylene polymerization of 3,30-(1,3-butadiyne-1,4-diyl) bisbenzoic acid precursors on the (10.4) surface of calcite, a bulk insulator with a band gap of around 6 eV. When deposited on the surface held at room temperature, ordered islands with a (1 x 3) superstructure are observed using dynamic atomic force microscopy. A distinct change is revealed upon heating the substrate to 485 K. After heating, molecular stripes with a characteristic inner structure are formed that excellently match the expected diacetylene polymer chains in appearance and repeat distance. The corresponding density functional theory computations reveal molecular-level bonding patterns of both the (1 x 3) superstructure and the formed striped structure, confirming the assignment of on-surface diacetylene polymerization. Transferring the concept of using diacetylene polymerization for creating conductive connections to bulk insulator surfaces paves the way towards application-relevant systems for future molecular electronic devices.
Physical Chemistry Chemical Physics
Page URI


Richter A, Haapasilta V, Venturini C, et al. Diacetylene polymerization on a bulk insulator surface. Physical Chemistry Chemical Physics. 2017;19(23):15172-15176.
Richter, A., Haapasilta, V., Venturini, C., Bechstein, R., Gourdon, A., Foster, A. S., & Kühnle, A. (2017). Diacetylene polymerization on a bulk insulator surface. Physical Chemistry Chemical Physics, 19(23), 15172-15176. doi:10.1039/c7cp01526g
Richter, A., Haapasilta, V., Venturini, C., Bechstein, R., Gourdon, A., Foster, A. S., and Kühnle, A. (2017). Diacetylene polymerization on a bulk insulator surface. Physical Chemistry Chemical Physics 19, 15172-15176.
Richter, A., et al., 2017. Diacetylene polymerization on a bulk insulator surface. Physical Chemistry Chemical Physics, 19(23), p 15172-15176.
A. Richter, et al., “Diacetylene polymerization on a bulk insulator surface”, Physical Chemistry Chemical Physics, vol. 19, 2017, pp. 15172-15176.
Richter, A., Haapasilta, V., Venturini, C., Bechstein, R., Gourdon, A., Foster, A.S., Kühnle, A.: Diacetylene polymerization on a bulk insulator surface. Physical Chemistry Chemical Physics. 19, 15172-15176 (2017).
Richter, A., Haapasilta, Ville, Venturini, C., Bechstein, Ralf, Gourdon, André, Foster, Adam S., and Kühnle, Angelika. “Diacetylene polymerization on a bulk insulator surface”. Physical Chemistry Chemical Physics 19.23 (2017): 15172-15176.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On-surface synthesis on a bulk insulator surface.
Richter A, Floris A, Bechstein R, Kantorovich L, Kühnle A., J Phys Condens Matter 30(13), 2018
PMID: 29460853
Hexacene generated on passivated silicon.
Eisenhut F, Krüger J, Skidin D, Nikipar S, Alonso JM, Guitián E, Pérez D, Ryndyk DA, Peña D, Moresco F, Cuniberti G., Nanoscale 10(26), 2018
PMID: 29938293
Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface.
Para F, Bocquet F, Nony L, Loppacher C, Féron M, Cherioux F, Gao DZ, Federici Canova F, Watkins MB., Nat Chem 10(11), 2018
PMID: 30150724

34 References

Daten bereitgestellt von Europe PubMed Central.

On-surface covalent coupling in ultrahigh vacuum.
Gourdon A., Angew. Chem. Int. Ed. Engl. 47(37), 2008
PMID: 18683834
On-surface reactions.
Lindner R, Kuhnle A., Chemphyschem 16(8), 2015
PMID: 25965579

Aviram, Chem. Phys. Lett. 29(), 1974
Direct determination of the energy required to operate a single molecule switch.
Loppacher Ch, Guggisberg M, Pfeiffer O, Meyer E, Bammerlin M, Luthi R, Schlittler R, Gimzewski JK, Tang H, Joachim C., Phys. Rev. Lett. 90(6), 2003
PMID: 12633309
Conductance switching in single molecules through conformational changes.
Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW Jr, Rawlett AM, Allara DL, Tour JM, Weiss PS., Science 292(5525), 2001
PMID: 11423655
Controlled chain polymerisation and chemical soldering for single-molecule electronics.
Okawa Y, Akai-Kasaya M, Kuwahara Y, Mandal SK, Aono M., Nanoscale 4(10), 2012
PMID: 22517409
Nanojunction between fullerene and one-dimensional conductive polymer on solid surfaces.
Nakaya M, Okawa Y, Joachim C, Aono M, Nakayama T., ACS Nano 8(12), 2014
PMID: 25469761

Wegner, Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 24(), 1969

Fahsi, CrystEngComm 15(), 2013
Nanoscale control of chain polymerization.
Okawa Y, Aono M., Nature 409(6821), 2001
PMID: 11217849

Grim, Angew. Chem., Int. Ed. Engl. 36(), 1997
Chemical wiring and soldering toward all-molecule electronic circuitry.
Okawa Y, Mandal SK, Hu C, Tateyama Y, Goedecker S, Tsukamoto S, Hasegawa T, Gimzewski JK, Aono M., J. Am. Chem. Soc. 133(21), 2011
PMID: 21548552

Endo, J. Phys.: Conf. Ser. 100(), 2008

Okawa, Soft Matter 4(), 2008

Miura, Langmuir 19(), 2003
Phase transition of a single sheet of sashlike polydiacetylene atomic sash on a solid surface.
Endo O, Ootsubo H, Toda N, Suhara M, Ozaki H, Mazaki Y., J. Am. Chem. Soc. 126(32), 2004
PMID: 15303843
Self-assembled diacetylene molecular wire polymerization on an insulating hexagonal boron nitride (0001) surface.
Makarova MV, Okawa Y, Verveniotis E, Watanabe K, Taniguchi T, Joachim C, Aono M., Nanotechnology 27(39), 2016
PMID: 27573286
Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene.
Deshpande A, Sham CH, Alaboson JM, Mullin JM, Schatz GC, Hersam MC., J. Am. Chem. Soc. 134(40), 2012
PMID: 22928587
Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks.
Rahe P, Kittelmann M, Neff JL, Nimmrich M, Reichling M, Maass P, Kuhnle A., Adv. Mater. Weinheim 25(29), 2013
PMID: 23907708

Rahe, Small 8(), 2012

Baer, Appl. Surf. Sci. 72(), 1993

Merkul, Eur. J. Org. Chem. (), 2011

Vilhelmsen, Eur. J. Org. Chem. (), 2013

Matsubara, Chem. Lett. (), 1998

VandeVondele, Comput. Phys. Commun. 167(), 2005
Generalized Gradient Approximation Made Simple.
Perdew JP, Burke K, Ernzerhof M., Phys. Rev. Lett. 77(18), 1996
PMID: 10062328

Lippert, Mol. Phys. 92(), 1997
Separable dual-space Gaussian pseudopotentials.
Goedecker S, Teter M, Hutter J., Phys. Rev., B Condens. Matter 54(3), 1996
PMID: 9986014

Schüller, J. Phys. Chem. C 120(), 2016


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 28561080
PubMed | Europe PMC

Suchen in

Google Scholar