Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population
Ell B, Hakimov S, Braukmann P, Cazzoli L, Kaupmann F, Mancino A, Altaf Memon J, Rother K, Saini A, Cimiano P (2017)
Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Autor*in
Ell, BasilUniBi ;
Hakimov, SherzodUniBi ;
Braukmann, Philipp;
Cazzoli, Lorenzo;
Kaupmann, Fabian;
Mancino, Amerigo;
Altaf Memon, Junaid;
Rother, Kai;
Saini, Abhishek;
Cimiano, PhilippUniBi
Einrichtung
Abstract / Bemerkung
Web Table Understanding in the context of Knowledge Base Population and the Semantic Web is the task of i) linking the content of tables retrieved from the Web to an RDF knowledge base, ii) of building hypotheses about the tables' structures and contents, iii) of extracting novel information from these tables, and iv) of adding this new information to a knowledge base. Knowledge Base Population has gained more and more interest in the last years due to the increased demand in large knowledge graphs which became relevant for Artificial Intelligence applications such as Question Answering and Semantic Search.
In this paper we describe a set of basic tasks which are relevant for Web Table Understanding in the mentioned context.
These tasks incrementally enrich a table with hypotheses about the table's content. In doing so, in the case of multiple interpretations, selecting one interpretation and thus deciding against other interpretations is avoided as much as possible. By postponing these decision, we enable table understanding approaches to decide by themselves, thus increasing the usability of the annotated table data.
We present statistics from analyzing and annotating 1.000.000 tables from the Web Table Corpus 2015 and make this dataset as well as our code available online.
Stichworte
Information Extraction;
Table Interpretation;
Corpus Creation;
Corpus Annotation;
Hypothesis Creation
Erscheinungsjahr
2017
Konferenz
Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017
Konferenzort
Vienna
Page URI
https://pub.uni-bielefeld.de/record/2913458
Zitieren
Ell B, Hakimov S, Braukmann P, et al. Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population. Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna.
Ell, B., Hakimov, S., Braukmann, P., Cazzoli, L., Kaupmann, F., Mancino, A., Altaf Memon, J., et al. (2017). Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population. Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna.
Ell, Basil, Hakimov, Sherzod, Braukmann, Philipp, Cazzoli, Lorenzo, Kaupmann, Fabian, Mancino, Amerigo, Altaf Memon, Junaid, Rother, Kai, Saini, Abhishek, and Cimiano, Philipp. 2017. “Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population”. Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna .
Ell, B., Hakimov, S., Braukmann, P., Cazzoli, L., Kaupmann, F., Mancino, A., Altaf Memon, J., Rother, K., Saini, A., and Cimiano, P. (2017).“Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population”. Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna.
Ell, B., et al., 2017. Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population. Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna.
B. Ell, et al., “Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population”, Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna, 2017.
Ell, B., Hakimov, S., Braukmann, P., Cazzoli, L., Kaupmann, F., Mancino, A., Altaf Memon, J., Rother, K., Saini, A., Cimiano, P.: Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population. Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna (2017).
Ell, Basil, Hakimov, Sherzod, Braukmann, Philipp, Cazzoli, Lorenzo, Kaupmann, Fabian, Mancino, Amerigo, Altaf Memon, Junaid, Rother, Kai, Saini, Abhishek, and Cimiano, Philipp. “Towards a Large Corpus of Richly Annotated Web Tables for Knowledge Base Population”. Presented at the Fifth international workshop on Linked Data for Information Extraction (LD4IE) at ISWC2017, Vienna, 2017.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
7753ca0acd596e79dcd48c23dce6530e