Convex Hull Property and Maximum Principle for Finite Element Minimizers of General Convex Functionals
Diening L, Kreuzer C, Schwarzacher S (2012)
SIAM Journal on Mathematical Analysis 44(5): 3594-3616.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
The convex hull property is the natural generalization of maximum principles
from scalar to vector valued functions. Maximum principles for finite element
approximations are often crucial for the preservation of qualitative properties
of the respective physical model. In this work we develop a convex hull
property for $\P_1$ conforming finite elements on simplicial non-obtuse meshes.
The proof does not resort to linear structures of partial differential
equations but directly addresses properties of the minimiser of a convex energy
functional. Therefore, the result holds for very general nonlinear partial
differential equations including e.g. the $p$-Laplacian and the mean curvature
problem. In the case of scalar equations the introduce techniques can be used
to prove standard discrete maximum principles for nonlinear problems. We
conclude by proving a strong discrete convex hull property on strictly acute
triangulations.
Erscheinungsjahr
2012
Zeitschriftentitel
SIAM Journal on Mathematical Analysis
Band
44
Ausgabe
5
Seite(n)
3594-3616
eISSN
1095-7154
Page URI
https://pub.uni-bielefeld.de/record/2913429
Zitieren
Diening L, Kreuzer C, Schwarzacher S. Convex Hull Property and Maximum Principle for Finite Element Minimizers of General Convex Functionals. SIAM Journal on Mathematical Analysis. 2012;44(5):3594-3616.
Diening, L., Kreuzer, C., & Schwarzacher, S. (2012). Convex Hull Property and Maximum Principle for Finite Element Minimizers of General Convex Functionals. SIAM Journal on Mathematical Analysis, 44(5), 3594-3616. doi:10.1137/120870554
Diening, L., Kreuzer, C., and Schwarzacher, S. (2012). Convex Hull Property and Maximum Principle for Finite Element Minimizers of General Convex Functionals. SIAM Journal on Mathematical Analysis 44, 3594-3616.
Diening, L., Kreuzer, C., & Schwarzacher, S., 2012. Convex Hull Property and Maximum Principle for Finite Element Minimizers of General Convex Functionals. SIAM Journal on Mathematical Analysis, 44(5), p 3594-3616.
L. Diening, C. Kreuzer, and S. Schwarzacher, “Convex Hull Property and Maximum Principle for Finite Element Minimizers of General Convex Functionals”, SIAM Journal on Mathematical Analysis, vol. 44, 2012, pp. 3594-3616.
Diening, L., Kreuzer, C., Schwarzacher, S.: Convex Hull Property and Maximum Principle for Finite Element Minimizers of General Convex Functionals. SIAM Journal on Mathematical Analysis. 44, 3594-3616 (2012).
Diening, Lars, Kreuzer, Christian, and Schwarzacher, Sebastian. “Convex Hull Property and Maximum Principle for Finite Element Minimizers of General Convex Functionals”. SIAM Journal on Mathematical Analysis 44.5 (2012): 3594-3616.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 1302.0112