Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles
Akemann G, Checinski T, Liu D-Z, Strahov E (Accepted)
Annales de l’Institut Henri Poincaré. B, Probability and statistics 55(1): 441-479.
Zeitschriftenaufsatz
| Angenommen | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Akemann, GernotUniBi;
Checinski, TomaszUniBi;
Liu, Dang-Zheng;
Strahov, Eugene
Einrichtung
Abstract / Bemerkung
We compare finite rank perturbations of the following three ensembles of
complex rectangular random matrices: First, a generalised Wishart ensemble with
one random and two fixed correlation matrices introduced by Borodin and
Péché, second, the product of two independent random matrices where one has
correlated entries, and third, the case when the two random matrices become
also coupled through a fixed matrix. The singular value statistics of all three
ensembles is shown to be determinantal and we derive double contour integral
representations for their respective kernels. Three different kernels are found
in the limit of infinite matrix dimension at the origin of the spectrum. They
depend on finite rank perturbations of the correlation and coupling matrices
and are shown to be integrable. The first kernel (I) is found for two
independent matrices from the second, and two weakly coupled matrices from the
third ensemble. It generalises the Meijer $G$-kernel for two independent and
uncorrelated matrices. The third kernel (III) is obtained for the generalised
Wishart ensemble and for two strongly coupled matrices. It further generalises
the perturbed Bessel kernel of Desrosiers and Forrester. Finally, kernel (II),
found for the ensemble of two coupled matrices, provides an interpolation
between the kernels (I) and (III), generalising previous findings of part of
the authors.
Erscheinungsjahr
2018
Zeitschriftentitel
Annales de l’Institut Henri Poincaré. B, Probability and statistics
Band
55
Ausgabe
1
Seite(n)
441-479
ISSN
0246-0203, 0020-2347
Page URI
https://pub.uni-bielefeld.de/record/2913286
Zitieren
Akemann G, Checinski T, Liu D-Z, Strahov E. Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré. B, Probability and statistics. Accepted;55(1):441-479.
Akemann, G., Checinski, T., Liu, D. - Z., & Strahov, E. (Accepted). Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré. B, Probability and statistics, 55(1), 441-479. doi:10.1214/18-AIHP888
Akemann, Gernot, Checinski, Tomasz, Liu, Dang-Zheng, and Strahov, Eugene. Accepted. “Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles”. Annales de l’Institut Henri Poincaré. B, Probability and statistics 55 (1): 441-479.
Akemann, G., Checinski, T., Liu, D. - Z., and Strahov, E. (Accepted). Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré. B, Probability and statistics 55, 441-479.
Akemann, G., et al., Accepted. Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré. B, Probability and statistics, 55(1), p 441-479.
G. Akemann, et al., “Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles”, Annales de l’Institut Henri Poincaré. B, Probability and statistics, vol. 55, Accepted, pp. 441-479.
Akemann, G., Checinski, T., Liu, D.-Z., Strahov, E.: Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles. Annales de l’Institut Henri Poincaré. B, Probability and statistics. 55, 441-479 (Accepted).
Akemann, Gernot, Checinski, Tomasz, Liu, Dang-Zheng, and Strahov, Eugene. “Finite rank perturbations in products of coupled random matrices: From one correlated to two Wishart ensembles”. Annales de l’Institut Henri Poincaré. B, Probability and statistics 55.1 (Accepted): 441-479.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 1704.05224
Suchen in