Time Series Prediction for Relational and Kernel Data
Paaßen B (2017)
Bielefeld University.
Datenpublikation
Download
Creator
Einrichtung
Abstract / Bemerkung
This Matlab (R) toolbox provides algorithms to predict the future location of some object in a kernel / distance embedding space. This permits to apply time series prediction to non-vectorial data, such as sequences, trees and graphs. The input for this toolbox are time series of relational or kernel data given as distance or kernel matrices and successor mappings. The output are affine coefficients of training data points, which can be used to locate the predicted point relative to the training data or new data and apply other relational or kernel-based approaches on the predicted point. In more detail, this toolbox implements kernel regression (Nadaraya-Watson regression), Gaussian Processes and the robust Bayesian Committee machine and provides a demo script demonstrating the function of this toolbox.
Stichworte
Structured Data;
Graphs;
Time Series Prediction;
Gaussian Processes;
Kernel Space
Erscheinungsjahr
2017
Copyright und Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2913104
Zitieren
Paaßen B. Time Series Prediction for Relational and Kernel Data. Bielefeld University; 2017.
Paaßen, B. (2017). Time Series Prediction for Relational and Kernel Data. Bielefeld University. doi:10.4119/unibi/2913104
Paaßen, Benjamin. 2017. Time Series Prediction for Relational and Kernel Data. Bielefeld University.
Paaßen, B. (2017). Time Series Prediction for Relational and Kernel Data. Bielefeld University.
Paaßen, B., 2017. Time Series Prediction for Relational and Kernel Data, Bielefeld University.
B. Paaßen, Time Series Prediction for Relational and Kernel Data, Bielefeld University, 2017.
Paaßen, B.: Time Series Prediction for Relational and Kernel Data. Bielefeld University (2017).
Paaßen, Benjamin. Time Series Prediction for Relational and Kernel Data. Bielefeld University, 2017.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Open Database License (ODbL) v1.0:
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-25T06:50:05Z
MD5 Prüfsumme
1e6daaa20c5acd17284ac9893d234a89
Material in PUB:
Wissenschaftliche Version
Gaussian process prediction for time series of structured data
Paaßen B, Göpfert C, Hammer B (2016)
In: Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Verleysen M (Ed); Louvain-la-Neuve: Ciaco - i6doc.com: 41--46.
Paaßen B, Göpfert C, Hammer B (2016)
In: Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Verleysen M (Ed); Louvain-la-Neuve: Ciaco - i6doc.com: 41--46.
In sonstiger Relation
Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces
Paaßen B, Göpfert C, Hammer B (2018)
Neural Processing Letters 48(2): 669-689.
Paaßen B, Göpfert C, Hammer B (2018)
Neural Processing Letters 48(2): 669-689.