BinaryAdder UML Dataset

Paaßen B (2017)
Bielefeld University.

Datenpublikation
 
Download
OA 44.02 MB
Abstract / Bemerkung
This is a dataset of time series or _traces_ of UML diagrams with the purpose to test the ability of artificial hint systems to provide next-step hints to students. The example learning task investigated in this dataset is to generate an [UML activity diagram](https://en.wikipedia.org/wiki/Activity_diagram) that models an algorithm to add two binary numbers. The dataset consists of twelve _training_ traces, which contain steps to a correct solution to the task, and twelve _test_ traces, which contain steps toward a possibly erroneous solution to the task. For each step of the test traces, hints of human tutors are available, accompanied by grades for these hints. To evaluate an artificial system, one can compare to the hints generated by human tutors.
Stichworte
intelligent tutoring systems; student trace data; computer science education; unified modelling language; edit hints
Erscheinungsjahr
2017
Page URI
https://pub.uni-bielefeld.de/record/2913083

Zitieren

Paaßen B. BinaryAdder UML Dataset. Bielefeld University; 2017.
Paaßen, B. (2017). BinaryAdder UML Dataset. Bielefeld University. doi:10.4119/unibi/2913083
Paaßen, B. (2017). BinaryAdder UML Dataset. Bielefeld University.
Paaßen, B., 2017. BinaryAdder UML Dataset, Bielefeld University.
B. Paaßen, BinaryAdder UML Dataset, Bielefeld University, 2017.
Paaßen, B.: BinaryAdder UML Dataset. Bielefeld University (2017).
Paaßen, Benjamin. BinaryAdder UML Dataset. Bielefeld University, 2017.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
dc1be3d5441a11e618e412b5bf17f42e

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar