In vivo Plug-and-play: A Modular Multi-enzyme Single-cell Catalyst for the Asymmetric Amination of Ketoacids and Ketones

Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W (2017)
Microbial Cell Factories 16(1): 132.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 1.49 MB
Farnberger, Judith E.; Lorenz, ElisabethUniBi; Richter, Nina; Wendisch, Volker F.UniBi ; Kroutil, Wolfgang
Abstract / Bemerkung
Transaminases have become a key tool in biocatalysis to introduce the amine functionality into a range of molecules like prochiral α-ketoacids and ketones. However, due to the necessity of shifting the equilibrium towards the product side (depending on the amine donor) an efficient amination system may require three enzymes. So far, this well-established transformation has mainly been performed in vitro by assembling all biocatalysts individually, which comes along with elaborate and costly preparation steps. We present the design and characterization of a flexible approach enabling a quick set-up of single-cell biocatalysts producing the desired enzymes. By choosing an appropriate co-expression strategy, a modular system was obtained, allowing for flexible plug-and-play combination of enzymes chosen from the toolbox of available transaminases and/or recycling enzymes tailored for the desired application.
By using a two-plasmid strategy for the recycling enzyme and the transaminase together with chromosomal integration of an amino acid dehydrogenase, two enzyme modules could individually be selected and combined with specifically tailored E. coli strains. Various plug-and-play combinations of the enzymes led to the construction of a series of single-cell catalysts suitable for the amination of various types of substrates. On the one hand the fermentative amination of α-ketoacids coupled both with metabolic and non-metabolic cofactor regeneration was studied, giving access to the corresponding α-amino acids in up to 96% conversion. On the other hand, biocatalysts were employed in a non-metabolic, “in vitro-type” asymmetric reductive amination of the prochiral ketone 4-phenyl-2-butanone, yielding the amine in good conversion (77%) and excellent stereoselectivity (ee = 98%).
The described modularized concept enables the construction of tailored single-cell catalysts which provide all required enzymes for asymmetric reductive amination in a flexible fashion, representing a more efficient approach for the production of chiral amines and amino acids.
Microbial Cell Factories
Page URI


Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W. In vivo Plug-and-play: A Modular Multi-enzyme Single-cell Catalyst for the Asymmetric Amination of Ketoacids and Ketones. Microbial Cell Factories. 2017;16(1): 132.
Farnberger, J. E., Lorenz, E., Richter, N., Wendisch, V. F., & Kroutil, W. (2017). In vivo Plug-and-play: A Modular Multi-enzyme Single-cell Catalyst for the Asymmetric Amination of Ketoacids and Ketones. Microbial Cell Factories, 16(1), 132. doi:10.1186/s12934-017-0750-5
Farnberger, J. E., Lorenz, E., Richter, N., Wendisch, V. F., and Kroutil, W. (2017). In vivo Plug-and-play: A Modular Multi-enzyme Single-cell Catalyst for the Asymmetric Amination of Ketoacids and Ketones. Microbial Cell Factories 16:132.
Farnberger, J.E., et al., 2017. In vivo Plug-and-play: A Modular Multi-enzyme Single-cell Catalyst for the Asymmetric Amination of Ketoacids and Ketones. Microbial Cell Factories, 16(1): 132.
J.E. Farnberger, et al., “In vivo Plug-and-play: A Modular Multi-enzyme Single-cell Catalyst for the Asymmetric Amination of Ketoacids and Ketones”, Microbial Cell Factories, vol. 16, 2017, : 132.
Farnberger, J.E., Lorenz, E., Richter, N., Wendisch, V.F., Kroutil, W.: In vivo Plug-and-play: A Modular Multi-enzyme Single-cell Catalyst for the Asymmetric Amination of Ketoacids and Ketones. Microbial Cell Factories. 16, : 132 (2017).
Farnberger, Judith E., Lorenz, Elisabeth, Richter, Nina, Wendisch, Volker F., and Kroutil, Wolfgang. “In vivo Plug-and-play: A Modular Multi-enzyme Single-cell Catalyst for the Asymmetric Amination of Ketoacids and Ketones”. Microbial Cell Factories 16.1 (2017): 132.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Amine transaminases in chiral amines synthesis: recent advances and challenges.
Ferrandi EE, Monti D., World J Microbiol Biotechnol 34(1), 2017
PMID: 29255954

66 References

Daten bereitgestellt von Europe PubMed Central.

Soloshonok VA, Izawa K., 2009
Biocatalytic routes to optically active amines
Höhne M, Bornscheuer UT., 2009
Chiral amine aynthesis—recent developments and trends for enamide reduction, reductive amination, and imine reduction
Nugent TC, El-Shazly M., 2010
Biocatalysis: A Status Report.
Bommarius AS., Annu Rev Chem Biomol Eng 6(), 2015
PMID: 26247293
Biocatalytic imine reduction and reductive amination of ketones
Schrittwieser JH, Velikogne S, Kroutil W., 2015
Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.
Gamenara D, Dominguez de Maria P., Org. Biomol. Chem. 12(19), 2014
PMID: 24695640
Monoamine oxidase (MAO-N) catalyzed deracemization of tetrahydro-beta-carbolines: substrate dependent switch in enantioselectivity
Ghislieri D, Houghton D, Green AP, Willies SC, Turner NJ., 2013
Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization.
Li T, Liang J, Ambrogelly A, Brennan T, Gloor G, Huisman G, Lalonde J, Lekhal A, Mijts B, Muley S, Newman L, Tobin M, Wong G, Zaks A, Zhang X., J. Am. Chem. Soc. 134(14), 2012
PMID: 22409428
Chemoenzymatic synthesis of optically pure - and -Biarylalanines through biocatalytic asymmetric amination and palladium-catalyzed arylation
Ahmed ST, Parmeggiani F, Weise NJ, Flitsch SL, Turner NJ., 2015
Engineering of amine dehydrogenase for asymmetric reductive amination of ketone by evolving Rhodococcus phenylalanine dehydrogenase
Ye LJ, Toh HH, Yang Y, Adams JP, Snajdrova R, Li Z., 2015
Development of beta-amino acid dehydrogenase for the synthesis of beta-amino acids via Reductive Amination of beta-keto acids
Zhang DL, Chen X, Zhang R, Yao PY, Wu QQ, Zhu DM., 2015
Biphasic reaction system allows for conversion of hydrophobic substrates by amine dehydrogenases
Au SK, Bommarius BR, Bommarius AS., 2014
Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds
Gotor-Fernández V, Busto E, Gotor V., 2006
New generation of biocatalysts for organic synthesis.
Nestl BM, Hammer SC, Nebel BA, Hauer B., Angew. Chem. Int. Ed. Engl. 53(12), 2014
PMID: 24520044
The Industrial Age of Biocatalytic Transamination.
Fuchs M, Farnberger JE, Kroutil W., European J Org Chem 2015(32), 2015
PMID: 26726292
ω-Transaminases for the production of optically pure amines and unnatural amino acids
Mathew S, Yun H., 2012
Formal asymmetric biocatalytic reductive amination.
Koszelewski D, Lavandera I, Clay D, Guebitz GM, Rozzell D, Kroutil W., Angew. Chem. Int. Ed. Engl. 47(48), 2008
PMID: 18972473
omega-Transaminases for the synthesis of non-racemic alpha-chiral primary amines.
Koszelewski D, Tauber K, Faber K, Kroutil W., Trends Biotechnol. 28(6), 2010
PMID: 20430457
Systems biocatalysis: an artificial metabolism for interconversion of functional groups
Tessaro D, Pollegioni L, Piubelli L, D’Arrigo P, Servi S., 2015
Transaminase biocatalysis: optimization and application
Guo F, Berglund P., 2017
Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY., Nat. Chem. Biol. 8(6), 2012
PMID: 22596205
Manufacturing molecules through metabolic engineering.
Keasling JD., Science 330(6009), 2010
PMID: 21127247
Designer microbes for biosynthesis.
Quin MB, Schmidt-Dannert C., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24646570
Designer microorganisms for optimized redox cascade reactions—challenges and future perspectives
Bayer T, Milker S, Wiesinger T, Rudroff F, Mihovilovic MD., 2015
The microbial cell-functional unit for energy dependent multistep biocatalysis.
Ladkau N, Schmid A, Buhler B., Curr. Opin. Biotechnol. 30(), 2014
PMID: 25035941
Systems biocatalysis: para-alkenylation of unprotected phenols
Busto E, Gerstmann M, Tobol F, Dittmann E, Wiltschi B, Kroutil W., 2016
Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways
France SP, Hepworth LJ, Turner NJ, Flitsch SL., 2017
A roadmap for biocatalysis - functional and spatial orchestration of enzyme cascades.
Schmidt-Dannert C, Lopez-Gallego F., Microb Biotechnol 9(5), 2016
PMID: 27418373
Cascade catalysis--strategies and challenges en route to preparative synthetic biology.
Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F., Chem. Commun. (Camb.) 51(27), 2015
PMID: 25654472
Artificial concurrent catalytic processes involving enzymes.
Kohler V, Turner NJ., Chem. Commun. (Camb.) 51(3), 2014
PMID: 25350691
Whole-cell one-pot biosynthesis of azelaic acid
Otte KB, Kittelberger J, Kirtz M, Nestl BM, Hauer B., 2014
An enzymatic toolbox for cascade reactions: a showcase for an in vivo redox sequence in asymmetric synthesis
Oberleitner N, Peters C, Muschiol J, Kadow M, Sass S, Bayer T, Schaaf P, Iqbal N, Rudroff F, Mihovilovic MD, Bornscheuer UT., 2013
Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols.
Groger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O., Angew. Chem. Int. Ed. Engl. 45(34), 2006
PMID: 16858704
Whole-Cell Biocatalysts for Stereoselective C-H Amination Reactions.
Both P, Busch H, Kelly PP, Mutti FG, Turner NJ, Flitsch SL., Angew. Chem. Int. Ed. Engl. 55(4), 2015
PMID: 26689856
Redox self-sufficient whole cell biotransformation for amination of alcohols.
Klatte S, Wendisch VF., Bioorg. Med. Chem. 22(20), 2014
PMID: 24894767
Role of L-alanine for redox self-sufficient amination of alcohols.
Klatte S, Wendisch VF., Microb. Cell Fact. 14(), 2015
PMID: 25612558
Exploiting cell metabolism for biocatalytic whole-cell transamination by recombinant Saccharomyces cerevisiae.
Weber N, Gorwa-Grauslund M, Carlquist M., Appl. Microbiol. Biotechnol. 98(10), 2014
PMID: 24557569
Substrate spectrum of omega-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis
Kaulmann U, Smithies K, Smith MEB, HaileS HC, Ward JM., 2007
Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.
Guzman LM, Belin D, Carson MJ, Beckwith J., J. Bacteriol. 177(14), 1995
PMID: 7608087
Recent trends and novel concepts in cofactor-dependent biotransformations.
Kara S, Schrittwieser JH, Hollmann F, Ansorge-Schumacher MB., Appl. Microbiol. Biotechnol. 98(4), 2013
PMID: 24362856
Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases.
Torres Pazmino DE, Riebel A, de Lange J, Rudroff F, Mihovilovic MD, Fraaije MW., Chembiochem 10(16), 2009
PMID: 19795432
Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.
Blank LM, Ebert BE, Buehler K, Buhler B., Antioxid. Redox Signal. 13(3), 2010
PMID: 20059399
Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification.
Schrewe M, Julsing MK, Buhler B, Schmid A., Chem Soc Rev 42(15), 2013
PMID: 23475180
Quantitative extraction and estimation of intracellular nicotinamide nucleotides of Escherichia coli.
Lilius EM, Multanen VM, Toivonen V., Anal. Biochem. 99(1), 1979
PMID: 43686
Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde.
Richter N, Neumann M, Liese A, Wohlgemuth R, Weckbecker A, Eggert T, Hummel W., Biotechnol. Bioeng. 106(4), 2010
PMID: 20198657

Sambrook J, Russell DW., 2001
Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA.
Cohen SN, Chang AC, Hsu L., Proc. Natl. Acad. Sci. U.S.A. 69(8), 1972
PMID: 4559594
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.
Datsenko KA, Wanner BL., Proc. Natl. Acad. Sci. U.S.A. 97(12), 2000
PMID: 10829079
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L., J. Bacteriol. 187(22), 2005
PMID: 16267288


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 28754115
PubMed | Europe PMC

Suchen in

Google Scholar