Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices

Noever SJ, Eder M, del Giudice F, Martin J, Werkmeister FX, Hallwig S, Fischer S, Seeck O, Weber N-E, Liewald C, Keilmann F, et al. (2017)
ADVANCED MATERIALS 29(26): 1606283.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Noever, Simon J.; Eder, Michael; del Giudice, Fabio; Martin, Jan; Werkmeister, Franz X.; Hallwig, Stefan; Fischer, Stefan; Seeck, Oliver; Weber, Nils-Eike; Liewald, Clemens; Keilmann, Fritz; Turchanin, Andrey
Alle
Abstract / Bemerkung
A method has been developed to stabilize and transfer nanofilms of functional organic semiconductors. The method is based on crosslinking of their topmost layers by low energy electron irradiation. The films can then be detached from their original substrates and subsequently deposited onto new solid or holey substrates retaining their structural integrity. Grazing incidence X-ray diffraction, X-ray specular reflectivity, and UV-Vis spectroscopy measurements reveal that the electron irradiation of similar or equal to 50 nm thick pentacene films results in crosslinking of their only topmost similar or equal to 5 nm (3-4 monolayers), whereas the deeper pentacene layers preserve their pristine crystallinity. The electronic performance of the transferred pentacene nanosheets in bottom contact field-effect devices is studied and it is found that they are fully functional and demonstrate superior charge injection properties in comparison to the pentacene films directly grown on the contact structures by vapor deposition. The new approach paves the way to integration of the organic semiconductor nanofilms on substrates unfavorable for their direct growth as well as to their implementation in hybrid devices with unusual geometries, e.g., in devices incorporating free-standing sheets.
Stichworte
2D materials; electronic devices; nanosheets; organic semiconductors; pentacene
Erscheinungsjahr
2017
Zeitschriftentitel
ADVANCED MATERIALS
Band
29
Ausgabe
26
Art.-Nr.
1606283
ISSN
0935-9648
eISSN
1521-4095
Page URI
https://pub.uni-bielefeld.de/record/2912970

Zitieren

Noever SJ, Eder M, del Giudice F, et al. Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices. ADVANCED MATERIALS. 2017;29(26): 1606283.
Noever, S. J., Eder, M., del Giudice, F., Martin, J., Werkmeister, F. X., Hallwig, S., Fischer, S., et al. (2017). Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices. ADVANCED MATERIALS, 29(26), 1606283. doi:10.1002/adma.201606283
Noever, S. J., Eder, M., del Giudice, F., Martin, J., Werkmeister, F. X., Hallwig, S., Fischer, S., Seeck, O., Weber, N. - E., Liewald, C., et al. (2017). Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices. ADVANCED MATERIALS 29:1606283.
Noever, S.J., et al., 2017. Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices. ADVANCED MATERIALS, 29(26): 1606283.
S.J. Noever, et al., “Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices”, ADVANCED MATERIALS, vol. 29, 2017, : 1606283.
Noever, S.J., Eder, M., del Giudice, F., Martin, J., Werkmeister, F.X., Hallwig, S., Fischer, S., Seeck, O., Weber, N.-E., Liewald, C., Keilmann, F., Turchanin, A., Nickel, B.: Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices. ADVANCED MATERIALS. 29, : 1606283 (2017).
Noever, Simon J., Eder, Michael, del Giudice, Fabio, Martin, Jan, Werkmeister, Franz X., Hallwig, Stefan, Fischer, Stefan, Seeck, Oliver, Weber, Nils-Eike, Liewald, Clemens, Keilmann, Fritz, Turchanin, Andrey, and Nickel, Bert. “Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices”. ADVANCED MATERIALS 29.26 (2017): 1606283.

36 References

Daten bereitgestellt von Europe PubMed Central.

Van der Waals heterostructures.
Geim AK, Grigorieva IV., Nature 499(7459), 2013
PMID: 23887427
Progress, challenges, and opportunities in two-dimensional materials beyond graphene.
Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutierrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE., ACS Nano 7(4), 2013
PMID: 23464873
Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan AK, Goldberg BB, Ruoff RS., ACS Nano 5(9), 2011
PMID: 21894965
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems.
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Boggild P, Borini S, Koppens FH, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhanen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SR, Tannock Q, Lofwander T, Kinaret J., Nanoscale 7(11), 2015
PMID: 25707682
Light-emitting diodes by band-structure engineering in van der Waals heterostructures.
Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A, Watanabe K, Taniguchi T, Haigh SJ, Geim AK, Tartakovskii AI, Novoselov KS., Nat Mater 14(3), 2015
PMID: 25643033

Lotsch, Annu. Rev. Mater. Res. 45(), 2015

Osborne, Science 353(), 2016
Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2.
Jariwala D, Howell SL, Chen KS, Kang J, Sangwan VK, Filippone SA, Turrisi R, Marks TJ, Lauhon LJ, Hersam MC., Nano Lett. 16(1), 2015
PMID: 26651229

Klauk, 2006

Menard, Adv. Mater. 16(), 2004
Carbon Nanomembranes.
Turchanin A, Golzhauser A., Adv. Mater. Weinheim 28(29), 2016
PMID: 27281234
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375

Turchanin, Adv. Mater. 21(), 2009

Tanuma, Surf. Interface Anal. 21(), 1994

Kuo, Appl. Phys. Lett. 94(), 2009

Singh, Adv. Mater. 17(), 2005
Wafer-scale design of lightweight and transparent electronics that wraps around hairs.
Salvatore GA, Munzenrieder N, Kinkeldei T, Petti L, Zysset C, Strebel I, Buthe L, Troster G., Nat Commun 5(), 2014
PMID: 24399363
Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films.
Schiefer S, Huth M, Dobrinevski A, Nickel B., J. Am. Chem. Soc. 129(34), 2007
PMID: 17672461

Nickel, Phys. Rev. B 70(), 2004
Depth-controlled grazing-incidence diffraction of synchrotron x radiation.
Dosch H, Batterman BW, Wack DC., Phys. Rev. Lett. 56(11), 1986
PMID: 10032581
Evanescent absorption in kinematic surface Bragg diffraction.
Dosch H., Phys. Rev., B Condens. Matter 35(5), 1987
PMID: 9941661

Vineyard, Phys. Rev. B 26(), 1982

Robinson, Rep. Prog. Phys. 55(), 1992
Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging.
Westermeier C, Cernescu A, Amarie S, Liewald C, Keilmann F, Nickel B., Nat Commun 5(), 2014
PMID: 24916130

Hudgins, J. Phys. Chem. A 102(), 1998

Baydoğan, J. Mater. Sci. Eng. B 107(), 2004

Rost, J. Appl. Phys. 95(), 2004

Käfer, Phys. Rev. B 75(), 2007

Hong, Org. Electron. 9(), 2008
Real-time observation and control of pentacene film growth on an artificially structured substrate.
Tsuruma Y, Al-Mahboob A, Ikeda S, Sadowski JT, Yoshikawa G, Fujikawa Y, Sakurai T, Saiki K., Adv. Mater. Weinheim 21(48), 2009
PMID: 25376650

Kim, Org. Electron. 14(), 2013

Yanagisawa, Thin Solid Films 464(), 2004

Gundlach, J. Appl. Phys. 100(), 2006

Horowitz, Adv. Funct. Mater. 14(), 2004

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28480616
PubMed | Europe PMC

Suchen in

Google Scholar