Finding home. Landmark ambiguity in human navigation

Jetzschke S, Fröhlich J, Ernst MO, Boeddeker N (2017)
Frontiers in Behavioural Neuroscience 11: 132.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.25 MB
Abstract / Bemerkung
Memories of places often include landmark cues, i.e., information provided by the spatial arrangement of distinct objects with respect to the target location. To study how humans combine landmark information for navigation, we conducted two experiments: To this end, participants were either provided with auditory landmarks while walking in a large sports hall or with visual landmarks while walking on a virtual-reality treadmill setup. We found that participants cannot reliably locate their home position due to ambiguities in the spatial arrangement when only one or two uniform landmarks provide cues with respect to the target. With three visual landmarks that look alike, the task is solved without ambiguity, while audio landmarks need to play three unique sounds for a similar performance. This reduction in ambiguity through integration of landmark information from 1, 2, and 3 landmarks is well modeled using a probabilistic approach based on maximum likelihood estimation. Unlike any deterministic model of human navigation (based e.g., on distance or angle information), this probabilistic model predicted both the precision and accuracy of the human homing performance. To further examine how landmark cues are integrated we introduced systematic conflicts in the visual landmark configuration between training of the home position and tests of the homing performance. The participants integrated the spatial information from each landmark near-optimally to reduce spatial variability. When the conflict becomes big, this integration breaks down and precision is sacrificed for accuracy. That is, participants return again closer to the home position, because they start ignoring the deviant third landmark. Relying on two instead of three landmarks, however, goes along with responses that are scattered over a larger area, thus leading to higher variability. To model the breakdown of integration with increasing conflict, the probabilistic model based on a simple Gaussian distribution used for Experiment 1 needed a slide extension in from of a mixture of Gaussians. All parameters for the Mixture Model were fixed based on the homing performance in the baseline condition which contained a single landmark. from the 1-Landmark Condition. This way we found that the Mixture Model could predict the integration performance and its breakdown with no additional free parameters. Overall these data suggest that humans use similar optimal probabilistic strategies in visual and auditory navigation, integrating landmark information to improve homing precision and balance homing precision with homing accuracy.
Erscheinungsjahr
2017
Zeitschriftentitel
Frontiers in Behavioural Neuroscience
Band
11
Art.-Nr.
132
ISSN
1662-5153
eISSN
1662-5153
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2912693

Zitieren

Jetzschke S, Fröhlich J, Ernst MO, Boeddeker N. Finding home. Landmark ambiguity in human navigation. Frontiers in Behavioural Neuroscience. 2017;11: 132.
Jetzschke, S., Fröhlich, J., Ernst, M. O., & Boeddeker, N. (2017). Finding home. Landmark ambiguity in human navigation. Frontiers in Behavioural Neuroscience, 11, 132. doi:10.3389/fnbeh.2017.00132
Jetzschke, Simon, Fröhlich, Julia, Ernst, Marc O, and Boeddeker, Norbert. 2017. “Finding home. Landmark ambiguity in human navigation”. Frontiers in Behavioural Neuroscience 11: 132.
Jetzschke, S., Fröhlich, J., Ernst, M. O., and Boeddeker, N. (2017). Finding home. Landmark ambiguity in human navigation. Frontiers in Behavioural Neuroscience 11:132.
Jetzschke, S., et al., 2017. Finding home. Landmark ambiguity in human navigation. Frontiers in Behavioural Neuroscience, 11: 132.
S. Jetzschke, et al., “Finding home. Landmark ambiguity in human navigation”, Frontiers in Behavioural Neuroscience, vol. 11, 2017, : 132.
Jetzschke, S., Fröhlich, J., Ernst, M.O., Boeddeker, N.: Finding home. Landmark ambiguity in human navigation. Frontiers in Behavioural Neuroscience. 11, : 132 (2017).
Jetzschke, Simon, Fröhlich, Julia, Ernst, Marc O, and Boeddeker, Norbert. “Finding home. Landmark ambiguity in human navigation”. Frontiers in Behavioural Neuroscience 11 (2017): 132.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
1f861f85b04dbc5734483ba625040aa3


2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Fractal dimension and the navigational information provided by natural scenes.
Shamsyeh Zahedi M, Zeil J., PLoS One 13(5), 2018
PMID: 29734381

63 References

Daten bereitgestellt von Europe PubMed Central.

"What" and "where" in the human auditory system.
Alain C, Arnott SR, Hevenor S, Graham S, Grady CL., Proc. Natl. Acad. Sci. U.S.A. 98(21), 2001
PMID: 11572938
Vestibular system: the many facets of a multimodal sense.
Angelaki DE, Cullen KE., Annu. Rev. Neurosci. 31(), 2008
PMID: 18338968
A model of ant route navigation driven by scene familiarity.
Baddeley B, Graham P, Husbands P, Philippides A., PLoS Comput. Biol. 8(1), 2012
PMID: 22241975
Integration of spatial maps in pigeons.
Blaisdell AP, Cook RG., Anim Cogn 8(1), 2004
PMID: 15221636

Bregman A.., 1994
Bayesian integration of visual and vestibular signals for heading.
Butler JS, Smith ST, Campos JL, Bulthoff HH., J Vis 10(11), 2010
PMID: 20884518
Landmark learning in bees
Cartwright B., Collett T.., 1983
Landmark maps for honeybees
Cartwright B., Collett T.., 1987
Bayesian integration of spatial information.
Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ., Psychol Bull 133(4), 2007
PMID: 17592958
Small-scale spatial cognition in pigeons.
Cheng K, Spetch ML, Kelly DM, Bingman VP., Behav. Processes 72(2), 2006
PMID: 16481125
Finding the way with a noisy brain.
Cheung A, Vickerstaff R., PLoS Comput. Biol. 6(11), 2010
PMID: 21085678
Spatial memory in insect navigation.
Collett M, Chittka L, Collett TS., Curr. Biol. 23(17), 2013
PMID: 24028962
View-based navigation in Hymenoptera: multiple strategies of landmark guidance in the approach to a feeder
Collett T., Rees J.., 1997
FAB-MAP: probabilistic localization and mapping in the space of appearance
Cummins M., Newman P.., 2008
Static and dynamic snapshots for goal localization in insects?
Dittmar L., Commun Integr Biol 4(1), 2011
PMID: 21509170
Out of the box: how bees orient in an ambiguous environment
Dittmar L., Stürzl W., Jetzschke S., Mertes M., Boeddeker N.., 2014
A Bayesian view on multimodal cue integration
Ernst M.., 2006
Optimal multisensory integration: assumptions and limits
Ernst M.., 2012
Merging the senses into a robust percept.
Ernst MO, Bulthoff HH., Trends Cogn. Sci. (Regul. Ed.) 8(4), 2004
PMID: 15050512
Multisensory perception: from integration to remapping
Ernst M., Di M.., 2011
Path integration in mammals.
Etienne AS, Jeffery KJ., Hippocampus 14(2), 2004
PMID: 15098724
Path integration in mammals and its interaction with visual landmarks.
Etienne AS, Maurer R, Seguinot V., J. Exp. Biol. 199(Pt 1), 1996
PMID: 8576691
Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory.
Fetsch CR, Deangelis GC, Angelaki DE., Eur. J. Neurosci. 31(10), 2010
PMID: 20584175
Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis.
Fleischmann PN, Christian M, Muller VL, Rossler W, Wehner R., J. Exp. Biol. 219(Pt 19), 2016
PMID: 27481270
The combination of vision and touch depends on spatial proximity.
Gepshtein S, Burge J, Ernst MO, Banks MS., J Vis 5(11), 2005
PMID: 16441199
Navigation and acquisition of spatial knowledge in a virtual maze.
Gillner S, Mallot HA., J Cogn Neurosci 10(4), 1998
PMID: 9712675
Visual homing in the absence of feature-based landmark information.
Gillner S, Weiss AM, Mallot HA., Cognition 109(1), 2008
PMID: 18804202
Ants use the panoramic skyline as a visual cue during navigation.
Graham P, Cheng K., Curr. Biol. 19(20), 2009
PMID: 19889365
Going round the bend: Persistent personal biases in walked angles.
Jetzschke S, Ernst MO, Moscatelli A, Boeddeker N., Neurosci. Lett. 617(), 2016
PMID: 26854843
Path integration from optic flow and body senses in a homing task.
Kearns MJ, Warren WH, Duchon AP, Tarr MJ., Perception 31(3), 2002
PMID: 11954696
Decision theory: what "should" the nervous system do?
Kording K., Science 318(5850), 2007
PMID: 17962554
Causal inference in multisensory perception.
Kording KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L., PLoS ONE 2(9), 2007
PMID: 17895984
Neuroscience Needs Behavior: Correcting a Reductionist Bias.
Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D., Neuron 93(3), 2017
PMID: 28182904
Landmark navigation without snapshots: the average landmark vector model
Lambrinos D., Möller R., Pfeifer R., Wehner R.., 1998
Visual scene perception in navigating wood ants.
Lent DD, Graham P, Collett TS., Curr. Biol. 23(8), 2013
PMID: 23583550
Bayesian inference with probabilistic population codes.
Ma WJ, Beck JM, Latham PE, Pouget A., Nat. Neurosci. 9(11), 2006
PMID: 17057707
Idiothetic navigation in humans: estimation of path length.
Mittelstaedt ML, Mittelstaedt H., Exp Brain Res 139(3), 2001
PMID: 11545471
Local visual homing by matched-filter descent in image distances.
Moller R, Vardy A., Biol Cybern 95(5), 2006
PMID: 17021827
A random-finite-set approach to Bayesian SLAM
Mullane J., Vo B.-N., Adams M., Vo B.., 2011
Development of cue integration in human navigation.
Nardini M, Jones P, Bedford R, Braddick O., Curr. Biol. 18(9), 2008
PMID: 18450447
How might ants use panoramic views for route navigation?
Philippides A, Baddeley B, Cheng K, Graham P., J. Exp. Biol. 214(Pt 3), 2011
PMID: 21228203
Modelling human visual navigation using multi-view scene reconstruction.
Pickup LC, Fitzgibbon AW, Glennerster A., Biol Cybern 107(4), 2013
PMID: 23778937
Walking straight into circles.
Souman JL, Frissen I, Sreenivasa MN, Ernst MO., Curr. Biol. 19(18), 2009
PMID: 19699093
Three-dimensional models of natural environments and the mapping of navigational information.
Sturzl W, Grixa I, Mair E, Narendra A, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 201(6), 2015
PMID: 25863682
How Wasps Acquire and Use Views for Homing.
Sturzl W, Zeil J, Boeddeker N, Hemmi JM., Curr. Biol. 26(4), 2016
PMID: 26877083

AUTHOR UNKNOWN, 2011
Place learning in humans: the role of distance and direction information
Waller D., Loomis J., Golledge R., Beall A.., 2000
A theory of magnitude: common cortical metrics of time, space and quantity.
Walsh V., Trends Cogn. Sci. (Regul. Ed.) 7(11), 2003
PMID: 14585444
Desert ant navigation: how miniature brains solve complex tasks.
Wehner R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(8), 2003
PMID: 12879352

Wilhelm P.., 2011
Optimal cue integration in ants.
Wystrach A, Mangan M, Webb B., Proc. Biol. Sci. 282(1816), 2015
PMID: 26400741
Visual homing: an insect perspective.
Zeil J., Curr. Opin. Neurobiol. 22(2), 2012
PMID: 22221863
Catchment areas of panoramic snapshots in outdoor scenes.
Zeil J, Hofmann MI, Chahl JS., J Opt Soc Am A Opt Image Sci Vis 20(3), 2003
PMID: 12630831
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28769773
PubMed | Europe PMC

Suchen in

Google Scholar