Intrinsic scaling properties for nonlocal operators

Kaßmann M, Mimica A (2017)
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY 19(4): 983-1011.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
We study integrodifferential operators and regularity estimates for solutions to integrodifferential equations. Our emphasis is on kernels with a critically low singularity which does not allow for standard scaling. For example, we treat operators that have a logarithmic order of differentiability. For corresponding equations we prove a growth lemma and derive a priori estimates. We derive these estimates by classical methods developed for partial differential operators. Since the integrodifferential operators under consideration generate Markov jump processes, we are able to offer an alternative approach using probabilistic techniques.
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY
Band
19
Ausgabe
4
Seite(n)
983-1011
ISSN
PUB-ID

Zitieren

Kaßmann M, Mimica A. Intrinsic scaling properties for nonlocal operators. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. 2017;19(4):983-1011.
Kaßmann, M., & Mimica, A. (2017). Intrinsic scaling properties for nonlocal operators. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 19(4), 983-1011. doi:10.4171/JEMS/686
Kaßmann, M., and Mimica, A. (2017). Intrinsic scaling properties for nonlocal operators. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY 19, 983-1011.
Kaßmann, M., & Mimica, A., 2017. Intrinsic scaling properties for nonlocal operators. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 19(4), p 983-1011.
M. Kaßmann and A. Mimica, “Intrinsic scaling properties for nonlocal operators”, JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, vol. 19, 2017, pp. 983-1011.
Kaßmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. 19, 983-1011 (2017).
Kaßmann, Moritz, and Mimica, Ante. “Intrinsic scaling properties for nonlocal operators”. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY 19.4 (2017): 983-1011.