Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions
Otlyotov AA, Lamm J-H, Blomeyer S, Mitzel NW, Rybkin VV, Zhabanov YA, Tverdova NV, Giricheva NI, Girichev GV (2017)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19(20): 13093-13100.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Otlyotov, Arseniy A.;
Lamm, Jan-HendrikUniBi ;
Blomeyer, SebastianUniBi ;
Mitzel, Norbert W.UniBi;
Rybkin, Vladimir V.;
Zhabanov, Yuriy A.;
Tverdova, Natalya V.;
Giricheva, Nina I.;
Girichev, Georgiy V.
Abstract / Bemerkung
The gas-phase structure of 1,8-bis[(trimethylsilyl) ethynyl]anthracene (1,8-BTMSA) was determined by a combined gas electron diffraction (GED)/mass spectrometry (MS) experiment as well as by quantum-chemical calculations (QC). DFT and dispersion corrected DFT calculations (DFT-D3) predicted two slightly different structures for 1,8-BTMSA concerning the mutual orientation of the two -C-C C-SiMe3 units: away from one another or both bent to the same side. An attempt was made to distinguish these structures by GED structural analysis. To probe the structural rigidity, a set of Born-Oppenheimer molecular dynamics (BOMD) calculations has been performed at the DFT-D level. Vibrational corrections Delta r = r(a) - r(e) were calculated by two BOMD approaches: a microcanonically (NVE) sampled ensemble of 20 trajectories (BOMD(NVE)) and a canonical (NVT) trajectory thermostated by the Noose-Hoover algorithm (BOMD(NVT)). In addition, the conventional approach with both, rectilinear and curvilinear approximations (SHRINK program), was also applied. Radial distribution curves obtained with models using both MD approaches provide a better description of the experimental data than those obtained using the rectilinear (SHRINK) approximation, while the curvilinear approach turned out to lead to physically inacceptable results. The electronic structure of 1,8-BTMSA was investigated in terms of an NBO analysis and was compared with that of the earlier studied 1,8-bis(phenylethynyl) anthracene. Theoretical and experimental results lead to the conclusion that the (trimethylsilyl) ethynyl (TMSE) groups in 1,8-BTMSA are neither restricted in rotation nor in bending at the temperature of the GED experiment.
Erscheinungsjahr
2017
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
19
Ausgabe
20
Seite(n)
13093-13100
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2912342
Zitieren
Otlyotov AA, Lamm J-H, Blomeyer S, et al. Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2017;19(20):13093-13100.
Otlyotov, A. A., Lamm, J. - H., Blomeyer, S., Mitzel, N. W., Rybkin, V. V., Zhabanov, Y. A., Tverdova, N. V., et al. (2017). Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 19(20), 13093-13100. doi:10.1039/c7cp01781b
Otlyotov, Arseniy A., Lamm, Jan-Hendrik, Blomeyer, Sebastian, Mitzel, Norbert W., Rybkin, Vladimir V., Zhabanov, Yuriy A., Tverdova, Natalya V., Giricheva, Nina I., and Girichev, Georgiy V. 2017. “Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19 (20): 13093-13100.
Otlyotov, A. A., Lamm, J. - H., Blomeyer, S., Mitzel, N. W., Rybkin, V. V., Zhabanov, Y. A., Tverdova, N. V., Giricheva, N. I., and Girichev, G. V. (2017). Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19, 13093-13100.
Otlyotov, A.A., et al., 2017. Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 19(20), p 13093-13100.
A.A. Otlyotov, et al., “Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 19, 2017, pp. 13093-13100.
Otlyotov, A.A., Lamm, J.-H., Blomeyer, S., Mitzel, N.W., Rybkin, V.V., Zhabanov, Y.A., Tverdova, N.V., Giricheva, N.I., Girichev, G.V.: Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 19, 13093-13100 (2017).
Otlyotov, Arseniy A., Lamm, Jan-Hendrik, Blomeyer, Sebastian, Mitzel, Norbert W., Rybkin, Vladimir V., Zhabanov, Yuriy A., Tverdova, Natalya V., Giricheva, Nina I., and Girichev, Georgiy V. “Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19.20 (2017): 13093-13100.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Intramolecular π-π Interactions in Flexibly Linked Partially Fluorinated Bisarenes in the Gas Phase.
Blomeyer S, Linnemannstöns M, Nissen JH, Paulus J, Neumann B, Stammler HG, Mitzel NW., Angew Chem Int Ed Engl 56(43), 2017
PMID: 28834050
Blomeyer S, Linnemannstöns M, Nissen JH, Paulus J, Neumann B, Stammler HG, Mitzel NW., Angew Chem Int Ed Engl 56(43), 2017
PMID: 28834050
29 References
Daten bereitgestellt von Europe PubMed Central.
Karatsu, J. Photopolym. Sci. Technol. 18(), 2005
Wang, Adv. Mater. 8(), 1996
Shanmugaraju, J. Mater. Chem. 21(), 2011
Katz, J. Org. Chem. 54(), 1989
Toyota, Bull. Chem. Soc. Jpn. 78(), 2005
Polyalkynylanthracenes--syntheses, structures and their behaviour towards UV irradiation.
Lamm JH, Glatthor J, Weddeling JH, Mix A, Chmiel J, Neumann B, Stammler HG, Mitzel NW., Org. Biomol. Chem. 12(37), 2014
PMID: 25162922
Lamm JH, Glatthor J, Weddeling JH, Mix A, Chmiel J, Neumann B, Stammler HG, Mitzel NW., Org. Biomol. Chem. 12(37), 2014
PMID: 25162922
1,8-Bis(phenylethynyl)anthracene - gas and solid phase structures.
Lamm JH, Horstmann J, Stammler HG, Mitzel NW, Zhabanov YA, Tverdova NV, Otlyotov AA, Giricheva NI, Girichev GV., Org. Biomol. Chem. 13(33), 2015
PMID: 26204511
Lamm JH, Horstmann J, Stammler HG, Mitzel NW, Zhabanov YA, Tverdova NV, Otlyotov AA, Giricheva NI, Girichev GV., Org. Biomol. Chem. 13(33), 2015
PMID: 26204511
Sipachev, THEOCHEM 121(), 1985
Sipachev, Struct. Chem. 11(), 2000
Sipachev, J. Mol. Struct. 567–568(), 2001
Semiempirical GGA-type density functional constructed with a long-range dispersion correction.
Grimme S., J Comput Chem 27(15), 2006
PMID: 16955487
Grimme S., J Comput Chem 27(15), 2006
PMID: 16955487
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.
Grimme S, Antony J, Ehrlich S, Krieg H., J Chem Phys 132(15), 2010
PMID: 20423165
Grimme S, Antony J, Ehrlich S, Krieg H., J Chem Phys 132(15), 2010
PMID: 20423165
Consistent structures and interactions by density functional theory with small atomic orbital basis sets.
Grimme S, Brandenburg JG, Bannwarth C, Hansen A., J Chem Phys 143(5), 2015
PMID: 26254642
Grimme S, Brandenburg JG, Bannwarth C, Hansen A., J Chem Phys 143(5), 2015
PMID: 26254642
Becke, J. Chem. Phys. 98(), 1993
Dunning, J. Chem. Phys. 90(), 1989
Laerdahl, J. Mol. Struct. 445(), 1998
Hamilton, Acta Crystallogr. 18(), 1965
Cyvin, 1968
Wann, Organometallics 27(), 2008
Experimental equilibrium structures: application of molecular dynamics simulations to vibrational corrections for gas electron diffraction.
Wann DA, Zakharov AV, Reilly AM, McCaffrey PD, Rankin DW., J Phys Chem A 113(34), 2009
PMID: 19645487
Wann DA, Zakharov AV, Reilly AM, McCaffrey PD, Rankin DW., J Phys Chem A 113(34), 2009
PMID: 19645487
Application of classical simulations for the computation of vibrational properties of free molecules.
Tikhonov DS, Sharapa DI, Schwabedissen J, Rybkin VV., Phys Chem Chem Phys 18(40), 2016
PMID: 27722605
Tikhonov DS, Sharapa DI, Schwabedissen J, Rybkin VV., Phys Chem Chem Phys 18(40), 2016
PMID: 27722605
Harvey, J. Comput. Chem. 19(), 1998
Hase, Chem. Phys. Lett. 74(), 1980
Gillespie, 2001
Campanelli, J. Phys. Chem. A 108(), 2004
Vögtle, Chem. Ber. 125(), 1992
Girichev, Prib. Tekh. Eksp. 27(), 1984
Girichev, Prib. Tekh. Eksp. 4(), 1986
Girichev, Izv. Vyssh. Uchebn. Zaved., Tekstiln. Prom. 2(), 2000
Material in PUB:
Teil dieser Dissertation
Phasenabhängige Strukturchemie - Struktur-Reaktivitäts-Beziehungen und nicht-kovalente Wechselwirkungen
Blomeyer S (2017)
Bielefeld.
Blomeyer S (2017)
Bielefeld.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 28485433
PubMed | Europe PMC
Suchen in