Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions

Otlyotov AA, Lamm J-H, Blomeyer S, Mitzel NW, Rybkin VV, Zhabanov YA, Tverdova NV, Giricheva NI, Girichev GV (2017)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19(20): 13093-13100.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Otlyotov, Arseniy A.; Lamm, Jan-HendrikUniBi ; Blomeyer, SebastianUniBi ; Mitzel, Norbert W.UniBi; Rybkin, Vladimir V.; Zhabanov, Yuriy A.; Tverdova, Natalya V.; Giricheva, Nina I.; Girichev, Georgiy V.
Abstract / Bemerkung
The gas-phase structure of 1,8-bis[(trimethylsilyl) ethynyl]anthracene (1,8-BTMSA) was determined by a combined gas electron diffraction (GED)/mass spectrometry (MS) experiment as well as by quantum-chemical calculations (QC). DFT and dispersion corrected DFT calculations (DFT-D3) predicted two slightly different structures for 1,8-BTMSA concerning the mutual orientation of the two -C-C C-SiMe3 units: away from one another or both bent to the same side. An attempt was made to distinguish these structures by GED structural analysis. To probe the structural rigidity, a set of Born-Oppenheimer molecular dynamics (BOMD) calculations has been performed at the DFT-D level. Vibrational corrections Delta r = r(a) - r(e) were calculated by two BOMD approaches: a microcanonically (NVE) sampled ensemble of 20 trajectories (BOMD(NVE)) and a canonical (NVT) trajectory thermostated by the Noose-Hoover algorithm (BOMD(NVT)). In addition, the conventional approach with both, rectilinear and curvilinear approximations (SHRINK program), was also applied. Radial distribution curves obtained with models using both MD approaches provide a better description of the experimental data than those obtained using the rectilinear (SHRINK) approximation, while the curvilinear approach turned out to lead to physically inacceptable results. The electronic structure of 1,8-BTMSA was investigated in terms of an NBO analysis and was compared with that of the earlier studied 1,8-bis(phenylethynyl) anthracene. Theoretical and experimental results lead to the conclusion that the (trimethylsilyl) ethynyl (TMSE) groups in 1,8-BTMSA are neither restricted in rotation nor in bending at the temperature of the GED experiment.
Erscheinungsjahr
2017
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
19
Ausgabe
20
Seite(n)
13093-13100
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2912342

Zitieren

Otlyotov AA, Lamm J-H, Blomeyer S, et al. Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2017;19(20):13093-13100.
Otlyotov, A. A., Lamm, J. - H., Blomeyer, S., Mitzel, N. W., Rybkin, V. V., Zhabanov, Y. A., Tverdova, N. V., et al. (2017). Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 19(20), 13093-13100. doi:10.1039/c7cp01781b
Otlyotov, Arseniy A., Lamm, Jan-Hendrik, Blomeyer, Sebastian, Mitzel, Norbert W., Rybkin, Vladimir V., Zhabanov, Yuriy A., Tverdova, Natalya V., Giricheva, Nina I., and Girichev, Georgiy V. 2017. “Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19 (20): 13093-13100.
Otlyotov, A. A., Lamm, J. - H., Blomeyer, S., Mitzel, N. W., Rybkin, V. V., Zhabanov, Y. A., Tverdova, N. V., Giricheva, N. I., and Girichev, G. V. (2017). Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19, 13093-13100.
Otlyotov, A.A., et al., 2017. Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 19(20), p 13093-13100.
A.A. Otlyotov, et al., “Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 19, 2017, pp. 13093-13100.
Otlyotov, A.A., Lamm, J.-H., Blomeyer, S., Mitzel, N.W., Rybkin, V.V., Zhabanov, Y.A., Tverdova, N.V., Giricheva, N.I., Girichev, G.V.: Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 19, 13093-13100 (2017).
Otlyotov, Arseniy A., Lamm, Jan-Hendrik, Blomeyer, Sebastian, Mitzel, Norbert W., Rybkin, Vladimir V., Zhabanov, Yuriy A., Tverdova, Natalya V., Giricheva, Nina I., and Girichev, Georgiy V. “Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19.20 (2017): 13093-13100.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Intramolecular π-π Interactions in Flexibly Linked Partially Fluorinated Bisarenes in the Gas Phase.
Blomeyer S, Linnemannstöns M, Nissen JH, Paulus J, Neumann B, Stammler HG, Mitzel NW., Angew Chem Int Ed Engl 56(43), 2017
PMID: 28834050

29 References

Daten bereitgestellt von Europe PubMed Central.


Karatsu, J. Photopolym. Sci. Technol. 18(), 2005

Wang, Adv. Mater. 8(), 1996

Shanmugaraju, J. Mater. Chem. 21(), 2011

Katz, J. Org. Chem. 54(), 1989

Toyota, Bull. Chem. Soc. Jpn. 78(), 2005
Polyalkynylanthracenes--syntheses, structures and their behaviour towards UV irradiation.
Lamm JH, Glatthor J, Weddeling JH, Mix A, Chmiel J, Neumann B, Stammler HG, Mitzel NW., Org. Biomol. Chem. 12(37), 2014
PMID: 25162922
1,8-Bis(phenylethynyl)anthracene - gas and solid phase structures.
Lamm JH, Horstmann J, Stammler HG, Mitzel NW, Zhabanov YA, Tverdova NV, Otlyotov AA, Giricheva NI, Girichev GV., Org. Biomol. Chem. 13(33), 2015
PMID: 26204511

Sipachev, THEOCHEM 121(), 1985

Sipachev, Struct. Chem. 11(), 2000

Sipachev, J. Mol. Struct. 567–568(), 2001
Consistent structures and interactions by density functional theory with small atomic orbital basis sets.
Grimme S, Brandenburg JG, Bannwarth C, Hansen A., J Chem Phys 143(5), 2015
PMID: 26254642

Becke, J. Chem. Phys. 98(), 1993

Dunning, J. Chem. Phys. 90(), 1989

Laerdahl, J. Mol. Struct. 445(), 1998

Hamilton, Acta Crystallogr. 18(), 1965

Cyvin, 1968

Wann, Organometallics 27(), 2008
Application of classical simulations for the computation of vibrational properties of free molecules.
Tikhonov DS, Sharapa DI, Schwabedissen J, Rybkin VV., Phys Chem Chem Phys 18(40), 2016
PMID: 27722605

Harvey, J. Comput. Chem. 19(), 1998

Hase, Chem. Phys. Lett. 74(), 1980

Gillespie, 2001

Campanelli, J. Phys. Chem. A 108(), 2004

Vögtle, Chem. Ber. 125(), 1992

Girichev, Prib. Tekh. Eksp. 27(), 1984

Girichev, Prib. Tekh. Eksp. 4(), 1986

Girichev, Izv. Vyssh. Uchebn. Zaved., Tekstiln. Prom. 2(), 2000
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28485433
PubMed | Europe PMC

Suchen in

Google Scholar