Mapping the emotional face. How individual face parts contribute to successful emotion recognition

Wegrzyn M, Vogt M, Kireclioglu B, Schneider J, Kißler J (2017)
PLOS ONE 12(5): e0177239.

Download
OA 17.33 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
Abstract / Bemerkung
Which facial features allow human observers to successfully recognize expressions of emotion? While the eyes and mouth have been frequently shown to be of high importance, research on facial action units has made more precise predictions about the areas involved in displaying each emotion. The present research investigated on a fine-grained level, which physical features are most relied on when decoding facial expressions. In the experiment, individual faces expressing the basic emotions according to Ekman were hidden behind a mask of 48 tiles, which was sequentially uncovered. Participants were instructed to stop the sequence as soon as they recognized the facial expression and assign it the correct label. For each part of the face, its contribution to successful recognition was computed, allowing to visualize the importance of different face areas for each expression. Overall, observers were mostly relying on the eye and mouth regions when successfully recognizing an emotion. Furthermore, the difference in the importance of eyes and mouth allowed to group the expressions in a continuous space, ranging from sadness and fear (reliance on the eyes) to disgust and happiness (mouth). The face parts with highest diagnostic value for expression identification were typically located in areas corresponding to action units from the facial action coding system. A similarity analysis of the usefulness of different face parts for expression recognition demonstrated that faces cluster according to the emotion they express, rather than by low-level physical features. Also, expressions relying more on the eyes or mouth region were in close proximity in the constructed similarity space. These analyses help to better understand how human observers process expressions of emotion, by delineating the mapping from facial features to psychological representation.
Erscheinungsjahr
Zeitschriftentitel
PLOS ONE
Band
12
Ausgabe
5
Art.-Nr.
e0177239
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Wegrzyn M, Vogt M, Kireclioglu B, Schneider J, Kißler J. Mapping the emotional face. How individual face parts contribute to successful emotion recognition. PLOS ONE. 2017;12(5): e0177239.
Wegrzyn, M., Vogt, M., Kireclioglu, B., Schneider, J., & Kißler, J. (2017). Mapping the emotional face. How individual face parts contribute to successful emotion recognition. PLOS ONE, 12(5), e0177239. doi:10.1371/journal.pone.0177239
Wegrzyn, M., Vogt, M., Kireclioglu, B., Schneider, J., and Kißler, J. (2017). Mapping the emotional face. How individual face parts contribute to successful emotion recognition. PLOS ONE 12:e0177239.
Wegrzyn, M., et al., 2017. Mapping the emotional face. How individual face parts contribute to successful emotion recognition. PLOS ONE, 12(5): e0177239.
M. Wegrzyn, et al., “Mapping the emotional face. How individual face parts contribute to successful emotion recognition”, PLOS ONE, vol. 12, 2017, : e0177239.
Wegrzyn, M., Vogt, M., Kireclioglu, B., Schneider, J., Kißler, J.: Mapping the emotional face. How individual face parts contribute to successful emotion recognition. PLOS ONE. 12, : e0177239 (2017).
Wegrzyn, Martin, Vogt, Maria, Kireclioglu, Berna, Schneider, Julia, and Kißler, Johanna. “Mapping the emotional face. How individual face parts contribute to successful emotion recognition”. PLOS ONE 12.5 (2017): e0177239.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-11-27T08:41:28Z

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Facial expression analysis with AFFDEX and FACET: A validation study.
Stöckli S, Schulte-Mecklenbeck M, Borer S, Samson AC., Behav Res Methods 50(4), 2018
PMID: 29218587

26 References

Daten bereitgestellt von Europe PubMed Central.

Transmitting and decoding facial expressions.
Smith ML, Cottrell GW, Gosselin F, Schyns PG., Psychol Sci 16(3), 2005
PMID: 15733197
Representational geometry: integrating cognition, computation, and the brain.
Kriegeskorte N, Kievit RA., Trends Cogn. Sci. (Regul. Ed.) 17(8), 2013
PMID: 23876494
What makes Mona Lisa smile?
Kontsevich LL, Tyler CW., Vision Res. 44(13), 2004
PMID: 15126060
Show me the features! Understanding recognition from the use of visual information.
Schyns PG, Bonnar L, Gosselin F., Psychol Sci 13(5), 2002
PMID: 12219805
What emotion does the "facial expression of disgust" express?
Pochedly JT, Widen SC, Russell JA., Emotion 12(6), 2012
PMID: 22506499
Representation is representation of similarities.
Edelman S., Behav Brain Sci 21(4), 1998
PMID: 10097019
Understanding face recognition.
Bruce V, Young A., Br J Psychol 77 ( Pt 3)(), 1986
PMID: 3756376
The NimStim set of facial expressions: judgments from untrained research participants.
Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, Marcus DJ, Westerlund A, Casey BJ, Nelson C., Psychiatry Res 168(3), 2009
PMID: 19564050
The Human Face as a Dynamic Tool for Social Communication.
Jack RE, Schyns PG., Curr. Biol. 25(14), 2015
PMID: 26196493
Core affect and the psychological construction of emotion.
Russell JA., Psychol Rev 110(1), 2003
PMID: 12529060
Compound facial expressions of emotion.
Du S, Tao Y, Martinez AM., Proc. Natl. Acad. Sci. U.S.A. 111(15), 2014
PMID: 24706770
Bubbles: a technique to reveal the use of information in recognition tasks.
Gosselin F, Schyns PG., Vision Res. 41(17), 2001
PMID: 11448718
Confidence intervals rather than P values: estimation rather than hypothesis testing.
Gardner MJ, Altman DG., Br Med J (Clin Res Ed) 292(6522), 1986
PMID: 3082422
Photographs of facial expression: accuracy, response times, and ratings of intensity.
Palermo R, Coltheart M., Behav Res Methods Instrum Comput 36(4), 2004
PMID: 15641409
Representational similarity analysis - connecting the branches of systems neuroscience.
Kriegeskorte N, Mur M, Bandettini P., Front Syst Neurosci 2(), 2008
PMID: 19104670
Hierarchical models of object recognition in cortex.
Riesenhuber M, Poggio T., Nat. Neurosci. 2(11), 1999
PMID: 10526343
Matching categorical object representations in inferior temporal cortex of man and monkey.
Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA., Neuron 60(6), 2008
PMID: 19109916
Are there basic emotions?
Ekman P., Psychol Rev 99(3), 1992
PMID: 1344638
A mechanism for impaired fear recognition after amygdala damage.
Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR., Nature 433(7021), 2005
PMID: 15635411
Gaze fixation and the neural circuitry of face processing in autism.
Dalton KM, Nacewicz BM, Johnstone T, Schaefer HS, Gernsbacher MA, Goldsmith HH, Alexander AL, Davidson RJ., Nat. Neurosci. 8(4), 2005
PMID: 15750588
The distributed human neural system for face perception.
Haxby JV, Hoffman EA, Gobbini MI., Trends Cogn. Sci. (Regul. Ed.) 4(6), 2000
PMID: 10827445
The "Reading the Mind in the Eyes" Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism.
Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I., J Child Psychol Psychiatry 42(2), 2001
PMID: 11280420
Investigating the brain basis of facial expression perception using multi-voxel pattern analysis.
Wegrzyn M, Riehle M, Labudda K, Woermann F, Baumgartner F, Pollmann S, Bien CG, Kissler J., Cortex 69(), 2015
PMID: 26046623

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28493921
PubMed | Europe PMC

Suchen in

Google Scholar