Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles
Wirtz T, Kieburg M, Guhr T (2017)
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 50(23): 235203.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wirtz, Tim;
Kieburg, MarioUniBi;
Guhr, Thomas
Einrichtung
Abstract / Bemerkung
The correlated Wishart model provides the standard benchmark when analyzing time series of any kind. Unfortunately, the real case, which is the most relevant one in applications, poses serious challenges for analytical calculations. Often these challenges are due to square root singularities which cannot be handled using common random matrix techniques. We present a new way to tackle this issue. Using supersymmetry, we carry out an anlaytical study which we support by numerical simulations. For large but finite matrix dimensions, we show that statistical properties of the fully correlated real Wishart model generically approach those of a correlated real Wishart model with doubled matrix dimensions and doubly degenerate empirical eigenvalues. This holds for the local and global spectral statistics. With Monte Carlo simulations we show that this is even approximately true for small matrix dimensions. We explicitly investigate the k-point correlation function as well as the distribution of the largest eigenvalue for which we find a surprisingly compact formula in the doubly degenerate case. Moreover we show that on the local scale the k-point correlation function exhibits the sine and the Airy kernel in the bulk and at the soft edges, respectively. We also address the positions and the fluctuations of the possible outliers in the data.
Stichworte
random matrix theory;
correlation matrices;
Wishart random matrix;
local;
spectral statistics;
supersymmetry;
macroscopic level density
Erscheinungsjahr
2017
Zeitschriftentitel
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
Band
50
Ausgabe
23
Art.-Nr.
235203
ISSN
1751-8113
eISSN
1751-8121
Page URI
https://pub.uni-bielefeld.de/record/2911992
Zitieren
Wirtz T, Kieburg M, Guhr T. Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL. 2017;50(23): 235203.
Wirtz, T., Kieburg, M., & Guhr, T. (2017). Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 50(23), 235203. doi:10.1088/1751-8121/aa6a6c
Wirtz, Tim, Kieburg, Mario, and Guhr, Thomas. 2017. “Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles”. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 50 (23): 235203.
Wirtz, T., Kieburg, M., and Guhr, T. (2017). Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 50:235203.
Wirtz, T., Kieburg, M., & Guhr, T., 2017. Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 50(23): 235203.
T. Wirtz, M. Kieburg, and T. Guhr, “Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles”, JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, vol. 50, 2017, : 235203.
Wirtz, T., Kieburg, M., Guhr, T.: Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL. 50, : 235203 (2017).
Wirtz, Tim, Kieburg, Mario, and Guhr, Thomas. “Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles”. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 50.23 (2017): 235203.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in