Ergodicity for the Stochastic Quantization Problems on the 2D-Torus

Röckner M, Zhu R, Zhu X (2017)
Communications in Mathematical Physics 353(3): 1061-1090.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In this paper we study the stochastic quantization problem on the two dimensional torus and establish ergodicity for the solutions. Furthermore, we prove a characterization of the quantum field on the torus in terms of its density under translation. We also deduce that the quantum field on the torus is an extreme point in the set of all L-symmetrizing measures, where L is the corresponding generator.
Erscheinungsjahr
2017
Zeitschriftentitel
Communications in Mathematical Physics
Band
353
Ausgabe
3
Seite(n)
1061-1090
ISSN
0010-3616
eISSN
1432-0916
Page URI
https://pub.uni-bielefeld.de/record/2911757

Zitieren

Röckner M, Zhu R, Zhu X. Ergodicity for the Stochastic Quantization Problems on the 2D-Torus. Communications in Mathematical Physics. 2017;353(3):1061-1090.
Röckner, M., Zhu, R., & Zhu, X. (2017). Ergodicity for the Stochastic Quantization Problems on the 2D-Torus. Communications in Mathematical Physics, 353(3), 1061-1090. doi:10.1007/s00220-017-2865-2
Röckner, M., Zhu, R., and Zhu, X. (2017). Ergodicity for the Stochastic Quantization Problems on the 2D-Torus. Communications in Mathematical Physics 353, 1061-1090.
Röckner, M., Zhu, R., & Zhu, X., 2017. Ergodicity for the Stochastic Quantization Problems on the 2D-Torus. Communications in Mathematical Physics, 353(3), p 1061-1090.
M. Röckner, R. Zhu, and X. Zhu, “Ergodicity for the Stochastic Quantization Problems on the 2D-Torus”, Communications in Mathematical Physics, vol. 353, 2017, pp. 1061-1090.
Röckner, M., Zhu, R., Zhu, X.: Ergodicity for the Stochastic Quantization Problems on the 2D-Torus. Communications in Mathematical Physics. 353, 1061-1090 (2017).
Röckner, Michael, Zhu, Rongchan, and Zhu, Xiangchan. “Ergodicity for the Stochastic Quantization Problems on the 2D-Torus”. Communications in Mathematical Physics 353.3 (2017): 1061-1090.