Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production

Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Höinghaus K (2017)
Angewandte Chemie International Edition 56(20): 5412-5452.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Leitner, Walter; Klankermayer, Jürgen; Pischinger, Stefan; Pitsch, Heinz; Kohse-Höinghaus, KatharinaUniBi
Erscheinungsjahr
2017
Zeitschriftentitel
Angewandte Chemie International Edition
Band
56
Ausgabe
20
Seite(n)
5412-5452
ISSN
1433-7851
Page URI
https://pub.uni-bielefeld.de/record/2911697

Zitieren

Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Höinghaus K. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie International Edition. 2017;56(20):5412-5452.
Leitner, W., Klankermayer, J., Pischinger, S., Pitsch, H., & Kohse-Höinghaus, K. (2017). Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie International Edition, 56(20), 5412-5452. doi:10.1002/anie.201607257
Leitner, Walter, Klankermayer, Jürgen, Pischinger, Stefan, Pitsch, Heinz, and Kohse-Höinghaus, Katharina. 2017. “Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production”. Angewandte Chemie International Edition 56 (20): 5412-5452.
Leitner, W., Klankermayer, J., Pischinger, S., Pitsch, H., and Kohse-Höinghaus, K. (2017). Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie International Edition 56, 5412-5452.
Leitner, W., et al., 2017. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie International Edition, 56(20), p 5412-5452.
W. Leitner, et al., “Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production”, Angewandte Chemie International Edition, vol. 56, 2017, pp. 5412-5452.
Leitner, W., Klankermayer, J., Pischinger, S., Pitsch, H., Kohse-Höinghaus, K.: Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie International Edition. 56, 5412-5452 (2017).
Leitner, Walter, Klankermayer, Jürgen, Pischinger, Stefan, Pitsch, Heinz, and Kohse-Höinghaus, Katharina. “Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production”. Angewandte Chemie International Edition 56.20 (2017): 5412-5452.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mechanochemical Decomposition of Crystalline Cellulose in the Presence of Protonated Layered Niobium Molybdate Solid Acid Catalyst.
Furusato S, Takagaki A, Hayashi S, Miyazato A, Kikuchi R, Oyama ST., ChemSusChem 11(5), 2018
PMID: 29380543
Kinetics in the real world: linking molecules, processes, and systems.
Kohse-Höinghaus K, Troe J, Grabow JU, Olzmann M, Friedrichs G, Hungenberg KD., Phys Chem Chem Phys 20(16), 2018
PMID: 29616689
Evolutionary freedom in the regulation of the conserved itaconate cluster by Ria1 in related Ustilaginaceae.
Geiser E, Hosseinpour Tehrani H, Meyer S, Blank LM, Wierckx N., Fungal Biol Biotechnol 5(), 2018
PMID: 30065845
Manganese-catalyzed hydroboration of carbon dioxide and other challenging carbonyl groups.
Erken C, Kaithal A, Sen S, Weyhermüller T, Hölscher M, Werlé C, Leitner W., Nat Commun 9(1), 2018
PMID: 30375381

395 References

Daten bereitgestellt von Europe PubMed Central.


Hoekman, Renewable Energy 34(), 2009
Opportunities and challenges for a sustainable energy future.
Chu S, Majumdar A., Nature 488(7411), 2012
PMID: 22895334

Yan, Energy Environ. Sci. 3(), 2010
Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union.
Littlewood J, Guo M, Boerjan W, Murphy RJ., Biotechnol Biofuels 7(), 2014
PMID: 25788978

Yan, Prog. Energy Combust. Sci. 36(), 2010

Chan, Atmos. Environ. 42(), 2008

Rakopoulos, Energy Convers. Manage. 51(), 2010

Giakoumis, Renewable Sustainable Energy Rev. 17(), 2013

Kim, Renewable Energy 35(), 2010

Zheng, Fuel 141(), 2015

Chen, Energy 54(), 2013
Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes.
Benbrahim-Tallaa L, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Guha N, Loomis D, Straif K; International Agency for Research on Cancer Monograph Working Group, Portier CJ, Karman D, White P, Heinrich U, Zeeb H, Shimada T, Tsuda H, Scheepers PT, Vermeulen R, Gustavsson P, Arlt VM, DeMarini DM, El-Bayoumy K, Garshick E, Jameson CW, Lunn R, McDonald JD, Nesnow S, Penning TM, Smith T, Steenland K, Cohen A, Kittelson DB, van Tongeren M., Lancet Oncol. 13(7), 2012
PMID: 22946126
Cytotoxicity and inflammatory potential of soot particles of low-emission diesel engines.
Su DS, Serafino A, Muller JO, Jentoft RE, Schlogl R, Fiorito S., Environ. Sci. Technol. 42(5), 2008
PMID: 18441832
Climate effects of black carbon aerosols in China and India.
Menon S, Hansen J, Nazarenko L, Luo Y., Science 297(5590), 2002
PMID: 12351786

Bond, J. Geophys. Res. Atmos. 118(), 2013

Ma, Energy Policy 44(), 2012

AUTHOR UNKNOWN, 0

Kirsten, MTZextra 2(), 2016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Editorial: the nonsense of biofuels.
Michel H., Angew. Chem. Int. Ed. Engl. 51(11), 2012
PMID: 22351484

AUTHOR UNKNOWN, Angew. Chem. 124(), 2012

Harvey, Food Policy 36(), 2011
Microbiology: Break down the walls.
Dixon RA., Nature 493(7430), 2013
PMID: 23282361
Cellulosic ethanol fights for life.
Peplow M., Nature 507(7491), 2014
PMID: 24622185
Renewable energy: Biofuels heat up.
Krieger K., Nature 508(7497), 2014
PMID: 24759397

Dauenhauer, Green Chem. 16(), 2014
Shale gas revolution: an opportunity for the production of biobased chemicals?
Bruijnincx PC, Weckhuysen BM., Angew. Chem. Int. Ed. Engl. 52(46), 2013
PMID: 24136811

AUTHOR UNKNOWN, Angew. Chem. 125(), 2013

Usón, Energy 36(), 2011

AUTHOR UNKNOWN, 2012
Fuel options: The ideal biofuel.
Savage N., Nature 474(7352), 2011
PMID: 21697843

Verhelst, Proc. IEEE 102(), 2014

Wallington, J. Chem. Educ. 90(), 2013

Romero, Energy Environ. Sci. 5(), 2012
Catalytic Transformation of Lignin for the Production of Chemicals and Fuels.
Li C, Zhao X, Wang A, Huber GW, Zhang T., Chem. Rev. 115(21), 2015
PMID: 26479313
Chemical routes for the transformation of biomass into chemicals.
Corma A, Iborra S, Velty A., Chem. Rev. 107(6), 2007
PMID: 17535020
Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering.
Huber GW, Iborra S, Corma A., Chem. Rev. 106(9), 2006
PMID: 16967928

Bomgardner, Chem. Eng. News 94(), 2016

AUTHOR UNKNOWN, 0
Valeric biofuels: a platform of cellulosic transportation fuels.
Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H., Angew. Chem. Int. Ed. Engl. 49(26), 2010
PMID: 20446282

AUTHOR UNKNOWN, Angew. Chem. 122(), 2010

de, SAE Technical Paper (), 2009

Damartzis, Renewable Sustainable Energy Rev. 15(), 2011

Swain, Renewable Sustainable Energy Rev. 15(), 2011

Naik, Renewable Sustainable Energy Rev. 14(), 2010

Dahmen, Energy Sustain. Soc. 2(), 2012

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Hoppe, Int. J. Engine Res. 17(), 2016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Johansson, Energy 61(), 2013

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Feedstocks for lignocellulosic biofuels.
Somerville C, Youngs H, Taylor C, Davis SC, Long SP., Science 329(5993), 2010
PMID: 20705851

Janssen, Energy Fuels 25(), 2011

Thewes, Energy Fuels 25(), 2011

Rakopoulos, Energy 43(), 2012

AUTHOR UNKNOWN, 0

Wang, Energy Fuels 20(), 2006

Song, Energy Fuels 16(), 2002

Li, Fuel 156(), 2015

Graboski, Prog. Energy Combust. Sci. 24(), 1998

Di, J. Aerosol Sci. 40(), 2009

Pepiot-Desjardins, Combust. Flame 154(), 2008

Graziano, SAE Int. J. Engines 9(), 2016

Sudholt, Proc. Combust. Inst. 35(), 2015

Heywood, 1988

Tomoda, Int. J. Engine Res. 11(), 2010

Patel, Int. J. Engine Res. 11(), 2010

Kalghatgi, J. Automot. Saf. Energy 6(), 2015

Chun, SAE Technical Paper (), 1989

Zhen, Appl. Energy 92(), 2012

Pan, Fuel 120(), 2014

Amer, SAE Int. J. Fuels Lubr. 5(), 2012

Szwaja, Int. J. Hydrogen Energy 32(), 2007

Hudson, Fuel 80(), 2001

Konig, SAE Technical Paper (), 1990

Anderson, Energy Fuels 24(), 2010

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Williams, Combust. Flame 161(), 2014

Karpov, Chem. Technol. Fuels Oils 43(), 2007

Turner, Fuel 90(), 2011

Cooney, Energy Fuels 23(), 2009

Hoppe, Fuel 167(), 2016

Baumgarten, 2006

von, Z. Angew. Math. Mech. 16(), 1936

Zigan, Energy Fuels 24(), 2010

Reitz, At. Spray Technol. 3(), 1987

Pickett, Combust. Flame 138(), 2004

Flynn, SAE Technical Paper (), 1999

Musculus, Prog. Energy Combust. Sci. 39(), 2013

Rollbusch, Int. J. Engine Res. 13(), 2011

Bhardwaj, SAE Int. J. Fuels Lubr. 6(), 2013

Gill, Fuel 95(), 2012

AUTHOR UNKNOWN, 0

Seong, Combust. Flame 159(), 2012

Lecointe, SAE Technical Paper (), 2003

Grandin, SAE Technical Paper (), 1998

Grandin, SAE Technical Paper (), 1999

Wei, Appl. Energy 99(), 2012

Su, Energy Convers. Manage. 78(), 2014

Pan, Fuel 132(), 2014

Cairns, SAE Technical Paper (), 2008

Dempsey, Int. J. Engine Res. 17(), 2016

Han, Fuel 109(), 2013

Bression, SAE Int. J. Fuels Lubr. 1(), 2009

AUTHOR UNKNOWN, 2003

Hanson, SAE Technical Paper (), 2009

He, Fuel 108(), 2013

Rezaei, Fuel 107(), 2013

Kokjohn, Int. J. Engine Res. 12(), 2011

Dempsey, J. Eng. Gas Turbines Power 134(), 2012

Kokjohn, Int. J. Engine Res. 14(), 2013

Heuser, SAE Int. J. Engines 9(), 2016

Sick, Proc. Combust. Inst. 34(), 2013

Gessenhardt, Proc. Combust. Inst. 35(), 2015

Pitsch, Prog. Aerosp. Sci. 44(), 2008

Angelberger, Oil Gas Sci. Technol.-Rev. IFP Energies Nouv. 69(), 2014

Goryntsev, Oil Gas Sci. Technol.-Rev. IFP Energies Nouv. 69(), 2014

Fansler, Int. J. Engine Res. 16(), 2015

Peters, 2000

AUTHOR UNKNOWN, 0

Pope, Prog. Energy Combust. Sci. 11(), 1985

Colin, Phys. Fluids 12(), 2000

Peters, Prog. Energy Combust. Sci. 10(), 1984

Barths, Oil Gas Sci. Technol.-Rev. IFP 54(), 1999

Lu, Prog. Energy Combust. Sci. 35(), 2009

Pitz, SAE Technical Paper (), 2007

Farrell, SAE Technical Paper (), 2007

Colket, AIAA Paper (), 2007

Narayanaswamy, Combust. Flame 165(), 2016

Dooley, Combust. Flame 157(), 2010

Curran, Combust. Flame 114(), 1998

Curran, Combust. Flame 129(), 2002

Westbrook, Combust. Flame 156(), 2009

Narayanaswamy, Combust. Flame 161(), 2014

AUTHOR UNKNOWN, 0

Narayanaswamy, Combust. Flame 157(), 2010

Sivaramakrishnan, Combust. Flame 139(), 2004

Cai, Combust. Flame 162(), 2015

Kalghatgi, SAE Technical Paper (), 2005

Kerschgens, Int. J. Engine Res. 16(), 2015

Blanquart, Combust. Flame 156(), 2009

Metcalfe, Int. J. Chem. Kinet. 45(), 2013

Frassoldati, Int. J. Hydrogen Energy 31(), 2006

Barbe, J. Chim. Phys. 92(), 1995

Seidel, Combust. Flame 162(), 2015

Sarathy, Combust. Flame 158(), 2011

Cai, Combust. Flame 173(), 2016

Wang, Combust. Flame 161(), 2014

Cancino, Proc. Combust. Inst. 32(), 2009

Andrae, Fuel 87(), 2008

Burke, Combust. Flame 162(), 2015

Herrmann, Combust. Flame 161(), 2014
Biofuel combustion chemistry: from ethanol to biodiesel.
Kohse-Hoinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR., Angew. Chem. Int. Ed. Engl. 49(21), 2010
PMID: 20446278

AUTHOR UNKNOWN, Angew. Chem. 122(), 2010

Sarathy, Combust. Flame 159(), 2012

Heufer, Energy Fuels 26(), 2012

Cai, Proc. Combust. Inst. 35(), 2015
PROGRESS IN DETAILED KINETIC MODELING OF THE COMBUSTION OF OXYGENATED COMPONENTS OF BIOFUELS.
Sy Tran L, Sirjean B, Glaude PA, Fournet R, Battin-Leclerc F., Energy (Oxf) 43(1), 2012
PMID: 23700355

Zádor, Prog. Energy Combust. Sci. 37(), 2011

Sarathy, Prog. Energy Combust. Sci. 44(), 2014

Cai, Combust. Flame 161(), 2014

Allen, Combust. Flame 161(), 2014

Burke, Combust. Flame 168(), 2016
An experimental and kinetic investigation of premixed furan/oxygen/argon flames.
Tian Z, Yuan T, Fournet R, Glaude PA, Sirjean B, Battin-Leclerc F, Zhang K, Qi F., Combust Flame 158(4), 2011
PMID: 23814311
Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part I: Furan.
Liu D, Togbe C, Tran LS, Felsmann D, Oßwald P, Nau P, Koppmann J, Lackner A, Glaude PA, Sirjean B, Fournet R, Battin-Leclerc F, Kohse-Hoinghaus K., Combust Flame 161(3), 2014
PMID: 24518999
A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation.
Somers KP, Simmie JM, Gillespie F, Burke U, Connolly J, Metcalfe WK, Battin-Leclerc F, Dirrenberger P, Herbinet O, Glaude PA, Curran HJ., Proc Combust Inst 34(1), 2013
PMID: 23814505
The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study.
Somers KP, Simmie JM, Metcalfe WK, Curran HJ., Phys Chem Chem Phys 16(11), 2014
PMID: 24496403

Somers, Combust. Flame 160(), 2013
Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran.
Tran LS, Togbe C, Liu D, Felsmann D, Oßwald P, Glaude PA, Fournet R, Sirjean B, Battin-Leclerc F, Kohse-Hoinghaus K., Combust Flame 161(3), 2014
PMID: 24518895
Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part III: 2,5-Dimethylfuran.
Togbe C, Tran LS, Liu D, Felsmann D, Oßwald P, Glaude PA, Sirjean B, Fournet R, Battin-Leclerc F, Kohse-Hoinghaus K., Combust Flame 161(3), 2014
PMID: 24518851

Kasper, Z. Phys. Chem. 225(), 2011

Tran, Combust. Flame 162(), 2015

Sudholt, Combust. Flame 171(), 2016

Lu, Proc. Combust. Inst. 30(), 2005

Pepiot-Desjardins, Combust. Flame 154(), 2008

Pepiot-Desjardins, Combust. Theory Modell. 12(), 2008

AUTHOR UNKNOWN, 1992

Chang, Proc. Combust. Inst. 35(), 2015

Bhagatwala, Proc. Combust. Inst. 35(), 2015

Bhagatwala, Combust. Flame 161(), 2014

Kerschgens, Combust. Flame 163(), 2016

Saggese, Combust. Flame 160(), 2013

Bernardi, Combust. Flame 168(), 2016

Hanson, Proc. Combust. Inst. 33(), 2011

Dreizler, Proc. Combust. Inst. 35(), 2015

Kohse-Höinghaus, Proc. Combust. Inst. 30(), 2005

Hansen, Prog. Energy Combust. Sci. 35(), 2009

Egolfopoulos, Prog. Energy Combust. Sci. 43(), 2014
Combustion Chemistry Diagnostics for Cleaner Processes.
Kohse-Hoinghaus K., Chemistry 22(38), 2016
PMID: 27440049

Herzler, Combust. Sci. Technol. 176(), 2004

Kiecherer, Proc. Combust. Inst. 35(), 2015

Wada, Combust. Theory Modell. 17(), 2013

Tsang, Int. J. Chem. Kinet. 16(), 1984
A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems.
Durrstein SH, Aghsaee M, Jerig L, Fikri M, Schulz C., Rev Sci Instrum 82(8), 2011
PMID: 21895257

Campbell, Proc. Combust. Inst. 34(), 2013

Sung, Prog. Energy Combust. Sci. 44(), 2014
Experimental confirmation of the low-temperature oxidation scheme of alkanes.
Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F., Angew. Chem. Int. Ed. Engl. 49(18), 2010
PMID: 20391420

AUTHOR UNKNOWN, Angew. Chem. 122(), 2010

Campbell, Fuel 126(), 2014

Niemann, Combust. Theory Modell. 14(), 2010
Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.
Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA., Nature 447(7147), 2007
PMID: 17581580
Direct, high-yield conversion of cellulose into biofuel.
Mascal M, Nikitin EB., Angew. Chem. Int. Ed. Engl. 47(41), 2008
PMID: 18671312

AUTHOR UNKNOWN, Angew. Chem. 120(), 2008

Xu, Renewable Sustainable Energy Rev. 54(), 2016

Lifshitz, J. Phys. Chem. A 102(), 1998
Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.
Sirjean B, Fournet R, Glaude PA, Battin-Leclerc F, Wang W, Oehlschlaeger MA., J Phys Chem A 117(7), 2013
PMID: 23327724

Uygun, Combust. Flame 161(), 2014

Jouzdani, Int. J. Chem. Kinet. 48(), 2016

Moshammer, Z. Phys. Chem. 229(), 2015

Xu, Combust. Flame 168(), 2016

Djokic, Proc. Combust. Inst. 34(), 2013

Cheng, Combust. Flame 161(), 2014

Wei, Combust. Sci. Technol. 186(), 2014

Friese, Proc. Combust. Inst. 34(), 2013

Sirjean, Proc. Combust. Inst. 34(), 2013

Tran, Proc. Combust. Inst. 35(), 2015

Sirignano, Proc. Combust. Inst. 35(), 2015

Alexandrino, Proc. Combust. Inst. 35(), 2015

Conturso, Fuel 175(), 2016

Moshammer, Combust. Flame 160(), 2013

Verdicchio, Proc. Combust. Inst. 35(), 2015
Theoretical Investigation of Intramolecular Hydrogen Shift Reactions in 3-Methyltetrahydrofuran (3-MTHF) Oxidation.
Parab PR, Sakade N, Sakai Y, Fernandes R, Heufer KA., J Phys Chem A 119(44), 2015
PMID: 26444499

Fenimore, Proc. Combust. Inst. 13(), 1971

Palash, Renewable Sustainable Energy Rev. 23(), 2013

Li, Energy Convers. Manage. 97(), 2015

Ban-Weiss, Fuel Process. Technol. 88(), 2007

Fernando, Energy Fuels 20(), 2006

Korakianitis, Prog. Energy Combust. Sci. 37(), 2011

Cho, Energy Convers. Manage. 48(), 2007

Xie, Appl. Therm. Eng. 94(), 2016

Daniel, Energy Fuels 26(), 2012

Zhong, Energy Fuels 24(), 2010

Ma, Appl. Energy 122(), 2014

Liu, Combust. Flame 165(), 2016

Xiao, Fuel 175(), 2016

Wang, Combust. Sci. Technol. 188(), 2016

Wei, Appl. Energy 132(), 2014

Wang, Fuel 103(), 2013

Constable, Org. Process Res. Dev. 11(), 2007

Capello, Green Chem. 9(), 2007

Jessop, Green Chem. 13(), 2011

Ahmad, Green Chem. 18(), 2016
Green chemistry: principles and practice.
Anastas P, Eghbali N., Chem Soc Rev 39(1), 2009
PMID: 20023854

Horváth, Green Chem. 10(), 2008
Applied biotransformations in green solvents.
Hernaiz MJ, Alcantara AR, Garcia JI, Sinisterra JV., Chemistry 16(31), 2010
PMID: 20669193

Meyer, Org. Process Res. Dev. 15(), 2011
The path forward for biofuels and biomaterials.
Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T., Science 311(5760), 2006
PMID: 16439654

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Rackemann, Biofuels Bioprod. Bioref. 5(), 2011

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Bio-oil based biorefinery strategy for the production of succinic acid.
Wang C, Thygesen A, Liu Y, Li Q, Yang M, Dang D, Wang Z, Wan Y, Lin W, Xing J., Biotechnol Biofuels 6(), 2013
PMID: 23657107
Biochemistry of microbial itaconic acid production.
Steiger MG, Blumhoff ML, Mattanovich D, Sauer M., Front Microbiol 4(), 2013
PMID: 23420787
Furfural--a promising platform for lignocellulosic biofuels.
Lange JP, van der Heide E, van Buijtenen J, Price R., ChemSusChem 5(1), 2011
PMID: 22213717

Kumar, Ind. Eng. Chem. Res. 48(), 2009

Bond, 2013

de, Chem. Ing. Tech. 87(), 2015

AUTHOR UNKNOWN, 0
The catalytic valorization of lignin for the production of renewable chemicals.
Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM., Chem. Rev. 110(6), 2010
PMID: 20218547

Hoydonckx, 2000

Mamman, Biofuels Bioprod. Bioref. 2(), 2008

Tong, Appl. Catal. A 385(), 2010

Lima, ChemCatChem 3(), 2011

Isikgor, Polym. Chem. 6(), 2015

Antal, Carbohydr. Res. 217(), 1991
Hydroxymethylfurfural, a versatile platform chemical made from renewable resources.
van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG., Chem. Rev. 113(3), 2013
PMID: 23394139
Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block.
Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R., Chem. Rev. 111(2), 2010
PMID: 20973468

Rosatella, Green Chem. 13(), 2011

Kazi, Chem. Eng. J. 169(), 2011
Catalytic Isomerization of Biomass-Derived Aldoses: A Review.
Delidovich I, Palkovits R., ChemSusChem 9(6), 2016
PMID: 26948404

Delidovich, Energy Environ. Sci. 7(), 2014

AUTHOR UNKNOWN, 0

Hajian, Curr. Res. J. Biol. Sci. 7(), 2015

Lopez, 2001

Robert, Green Chem. 18(), 2016

Lockwood, Ind. Eng. Chem. 37(), 1945
Biotechnological production of itaconic acid.
Willke T, Vorlop KD., Appl. Microbiol. Biotechnol. 56(3-4), 2001
PMID: 11548996
Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus.
Okabe M, Lies D, Kanamasa S, Park EY., Appl. Microbiol. Biotechnol. 84(4), 2009
PMID: 19629471

Schute, ACS Sustainable Chem. Eng. 4(), 2016
Accumulation of 1-trans-2,3-epoxysuccinic acid and succinic acid by Paecilomyces varioti.
Ling ET, Dibble JT, Houston MR, Lockwood LB, Elliott LP., Appl. Environ. Microbiol. 35(6), 1978
PMID: 567036

Cok, Biofuels Bioprod. Bioref. 8(), 2014

AUTHOR UNKNOWN, 0

van, 2016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Zhang, J. Mol. Catal. A 335(), 2011

AUTHOR UNKNOWN, 0
A general and efficient aldehyde decarbonylation reaction by using a palladium catalyst.
Modak A, Deb A, Patra T, Rana S, Maity S, Maiti D., Chem. Commun. (Camb.) 48(35), 2012
PMID: 22441208

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Lintz, Catal. Lett. 46(), 1997

Cespi, Green Chem. 18(), 2016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Mariscal, Energy Environ. Sci. 9(), 2016

Zhu, New J. Chem. 27(), 2003

Burnette, Ind. Eng. Chem. 40(), 1948

Sitthisa, J. Catal. 284(), 2011

Iqbal, Catal. Sci. Technol. 4(), 2014

Alexandrino, Energy Fuels 28(), 2014

Ulonska, Energy Fuels 30(), 2016

Hu, Ind. Eng. Chem. Res. 53(), 2014

Zu, Appl. Catal. B 146(), 2014

Nishimura, Catal. Today 232(), 2014

Tarabanko, Russ. J. Appl. Chem. 88(), 2015
One-pot hydrogenation conditions for a sequential process to (+)-monomorine.
Kim G, Jung SD, Lee EJ, Kim N., J. Org. Chem. 68(13), 2003
PMID: 12816507

Luska, ACS Catal. 6(), 2016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen.
Agirrezabal-Telleria I, Larreategui A, Requies J, Guemez MB, Arias PL., Bioresour. Technol. 102(16), 2011
PMID: 21624830

Rao, J. Catal. 171(), 1997

Seo, J. Catal. 67(), 1981

AUTHOR UNKNOWN, 0
Highly selective decarbonylation of 5-(hydroxymethyl)furfural in the presence of compressed carbon dioxide.
Geilen FM, vom Stein T, Engendahl B, Winterle S, Liauw MA, Klankermayer J, Leitner W., Angew. Chem. Int. Ed. Engl. 50(30), 2011
PMID: 21661080

AUTHOR UNKNOWN, Angew. Chem. 123(), 2011

Perez, Green Chem. 16(), 2014

AUTHOR UNKNOWN, 0

Moussallem, Tetrahedron 68(), 2012

Smith, Green Chem. 18(), 2016

AUTHOR UNKNOWN, 0

Minh, Top. Catal. 53(), 2010
Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons.
Luque R, Clark JH, Yoshida K, Gai PL., Chem. Commun. (Camb.) (35), 2009
PMID: 19707654

Hong, Appl. Catal. A 415-416(), 2012

Godawa, Resour. Conserv. Recycl. 3(), 1990

AUTHOR UNKNOWN, 0

Kanetaka, Ind. Eng. Chem. 62(), 1970
2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry.
Pace V, Hoyos P, Castoldi L, Dominguez de Maria P, Alcantara AR., ChemSusChem 5(8), 2012
PMID: 22887922

Kelly, Chem. Health Saf. 3(), 1996
Pentenoic acid pathways for cellulosic biofuels.
Palkovits R., Angew. Chem. Int. Ed. Engl. 49(26), 2010
PMID: 20480484

AUTHOR UNKNOWN, Angew. Chem. 122(), 2010
Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system.
Geilen FM, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W., Angew. Chem. Int. Ed. Engl. 49(32), 2010
PMID: 20586088

AUTHOR UNKNOWN, Angew. Chem. 122(), 2010

Khoo, Resour. Conserv. Recycl. 95(), 2015

AUTHOR UNKNOWN, 0

Zheng, J. Mol. Catal. A 246(), 2006

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Hosseini-Sarvari, J. Sulfur Chem. 32(), 2011

Larson, 2008

Perrier, Green Chem. 15(), 2013
Effective production of octane from biomass derivatives under mild conditions.
Xu W, Xia Q, Zhang Y, Guo Y, Wang Y, Lu G., ChemSusChem 4(12), 2011
PMID: 22045599

Ramos, Catal. Sci. Technol. 6(), 2016
Synthesis of 1-octanol and 1,1-dioctyl ether from biomass-derived platform chemicals.
Julis J, Leitner W., Angew. Chem. Int. Ed. Engl. 51(34), 2012
PMID: 22778056

AUTHOR UNKNOWN, Angew. Chem. 124(), 2012

AUTHOR UNKNOWN, 0

Luska, Chem. Sci. 5(), 2014

Bond, Energy Environ. Sci. 7(), 2014

Wang, 2010

Falbe, 2000
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals.
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R., Nature 476(7360), 2011
PMID: 21832992
A synthetic recursive "+1" pathway for carbon chain elongation.
Marcheschi RJ, Li H, Zhang K, Noey EL, Kim S, Chaubey A, Houk KN, Liao JC., ACS Chem. Biol. 7(4), 2012
PMID: 22242720
A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols.
Machado HB, Dekishima Y, Luo H, Lan EI, Liao JC., Metab. Eng. 14(5), 2012
PMID: 22819734
Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties.
Akhtar MK, Dandapani H, Thiel K, Jones PR., Metab Eng Commun 2(), 2014
PMID: 27066394

Horváth, Green Chem. 10(), 2008

Qi, ACS Catal. 2(), 2012

Fábos, ACS Sustainable Chem. Eng. 3(), 2015

Kong, Comput. Chem. Eng. 91(), 2016

Broadbelt, AIChE J. 51(), 2005

Li, Chem. Eng. Sci. 59(), 2004
Bio-refinery as the bio-inspired process to bulk chemicals.
Sanders J, Scott E, Weusthuis R, Mooibroek H., Macromol Biosci 7(2), 2007
PMID: 17295397

Kraemer, Comput. Chem. Eng. 35(), 2011

Voll, AIChE J. 58(), 2012
Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-triphos complex: molecular control over selectivity and substrate scope.
vom Stein T, Meuresch M, Limper D, Schmitz M, Holscher M, Coetzee J, Cole-Hamilton DJ, Klankermayer J, Leitner W., J. Am. Chem. Soc. 136(38), 2014
PMID: 25208046

Voll, Biofuels, Bioprod. Bioref. 6(), 2012

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Papadogianakis, J. Mol. Catal. A 116(), 1997
Harnessing renewable energy with CO2 for the chemical value chain: challenges and opportunities for catalysis.
Klankermayer J, Leitner W., Philos Trans A Math Phys Eng Sci 374(2061), 2016
PMID: 26755762
Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry.
Klankermayer J, Wesselbaum S, Beydoun K, Leitner W., Angew. Chem. Int. Ed. Engl. 55(26), 2016
PMID: 27237963

AUTHOR UNKNOWN, Angew. Chem. 128(), 2016
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28185380
PubMed | Europe PMC

Suchen in

Google Scholar