Bioinformatics in Germany: toward a national-level infrastructure

Tauch A, Al-Dilaimi A (2017)
Briefings in Bioinformatics 20(2): 370-374.

Zeitschriftenaufsatz | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The German Network for Bioinformatics Infrastructure (de.NBI) is a national initiative funded by the German Federal Ministry of Education and Research (BMBF). The mission of de.NBI is (i) to provide high-quality bioinformatics services to users in basic and applied life sciences research from academia, industry and biomedicine; (ii) to offer bioinformatics training to users in Germany and Europe through a wide range of workshops and courses; and (iii) to foster the cooperation of the German bioinformatics community with international network structures such as the European life-sciences Infrastructure for biological Information (ELIXIR). The network was launched by the BMBF in March 2015 and now includes 40 service projects operated by 30 project partners that are organized in eight service centers. The de.NBI staff develops further and maintains almost 100 bioinformatics services for the human, plant and microbial research fields and provides comprehensive training courses to support users with different expertise levels in bioinformatics. In the future, de.NBI will expand its activities to the European level, as the de.NBI consortium was assigned by the BMBF to establish and run the German node of ELIXIR. The Author 2017. Published by Oxford University Press.
big data analysis; bioinformatics infrastructure; bioinformatics service; bioinformatics training; de.NBI; distributed network
Briefings in Bioinformatics
Page URI


Tauch A, Al-Dilaimi A. Bioinformatics in Germany: toward a national-level infrastructure. Briefings in Bioinformatics. 2017;20(2):370-374.
Tauch, A., & Al-Dilaimi, A. (2017). Bioinformatics in Germany: toward a national-level infrastructure. Briefings in Bioinformatics, 20(2), 370-374. doi:10.1093/bib/bbx040
Tauch, Andreas, and Al-Dilaimi, Arwa. 2017. “Bioinformatics in Germany: toward a national-level infrastructure”. Briefings in Bioinformatics 20 (2): 370-374.
Tauch, A., and Al-Dilaimi, A. (2017). Bioinformatics in Germany: toward a national-level infrastructure. Briefings in Bioinformatics 20, 370-374.
Tauch, A., & Al-Dilaimi, A., 2017. Bioinformatics in Germany: toward a national-level infrastructure. Briefings in Bioinformatics, 20(2), p 370-374.
A. Tauch and A. Al-Dilaimi, “Bioinformatics in Germany: toward a national-level infrastructure”, Briefings in Bioinformatics, vol. 20, 2017, pp. 370-374.
Tauch, A., Al-Dilaimi, A.: Bioinformatics in Germany: toward a national-level infrastructure. Briefings in Bioinformatics. 20, 370-374 (2017).
Tauch, Andreas, and Al-Dilaimi, Arwa. “Bioinformatics in Germany: toward a national-level infrastructure”. Briefings in Bioinformatics 20.2 (2017): 370-374.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The RNA workbench 2.0: next generation RNA data analysis.
Fallmann J, Videm P, Bagnacani A, Batut B, Doyle MA, Klingstrom T, Eggenhofer F, Stadler PF, Backofen R, Grüning B., Nucleic Acids Res 47(w1), 2019
PMID: 31073612
A generally applicable lightweight method for calculating a value structure for tools and services in bioinformatics infrastructure projects.
Mayer G, Quast C, Felden J, Lange M, Prinz M, Pühler A, Lawerenz C, Scholz U, Glöckner FO, Müller W, Marcus K, Eisenacher M., Brief Bioinform (), 2017
PMID: 29092005

18 References

Daten bereitgestellt von Europe PubMed Central.

Big Data, Big Opportunities, and Big Challenges.
Frelinger JA., J. Investig. Dermatol. Symp. Proc. 17(2), 2015
PMID: 26551943
Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies.
de Brevern AG, Meyniel JP, Fairhead C, Neuveglise C, Malpertuy A., Biomed Res Int 2015(), 2015
PMID: 26125026
Single-cell Transcriptome Study as Big Data.
Yu P, Lin W., Genomics Proteomics Bioinformatics 14(1), 2016
PMID: 26876720
Big Data: the challenge for small research groups in the era of cancer genomics.
Noor AM, Holmberg L, Gillett C, Grigoriadis A., Br. J. Cancer 113(10), 2015
PMID: 26492224
Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics.
Popescu GV, Noutsos C, Popescu SC., Methods Mol. Biol. 1415(), 2016
PMID: 27115651
Precision medicine in the age of big data: The present and future role of large-scale unbiased sequencing in drug discovery and development.
Vicini P, Fields O, Lai E, Litwack ED, Martin AM, Morgan TM, Pacanowski MA, Papaluca M, Perez OD, Ringel MS, Robson M, Sakul H, Vockley J, Zaks T, Dolsten M, Sogaard M., Clin. Pharmacol. Ther. 99(2), 2015
PMID: 26536838
From big data analysis to personalized medicine for all: challenges and opportunities.
Alyass A, Turcotte M, Meyre D., BMC Med Genomics 8(), 2015
PMID: 26112054




The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23193283
BacDive--the Bacterial Diversity Metadatabase.
Sohngen C, Bunk B, Podstawka A, Gleim D, Overmann J., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24214959
BRENDA in 2017: new perspectives and new tools in BRENDA.
Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J, Schomburg D., Nucleic Acids Res. 45(D1), 2016
PMID: 27924025
ELIXIR: a distributed infrastructure for European biological data.
Crosswell LC, Thornton JM., Trends Biotechnol. 30(5), 2012
PMID: 22417641
The Dutch Techcentre for Life Sciences: Enabling data-intensive life science research in the Netherlands.
Eijssen L, Evelo C, Kok R, Mons B, Hooft R; other founding members of DTL Data (see Acknowledgements)., F1000Res 4(), 2015
PMID: 26913186
GOBLET: the Global Organisation for Bioinformatics Learning, Education and Training.
Attwood TK, Atwood TK, Bongcam-Rudloff E, Brazas ME, Corpas M, Gaudet P, Lewitter F, Mulder N, Palagi PM, Schneider MV, van Gelder CW; GOBLET Consortium, Attwood TK, Banag C, Blackford S, Blatter MC, Bongcam-Rudloff E, Brazas MD, Brooksbank C, Budd A, Charleston M, Christoffels A, Conesa A, Corpas M, Crowe M, Davies A, de Crecy-Lagard V, De Las Rivas J, Doyle M, Edwards R, Facchiano A, Fernandes P, Gaeta B, Gaudet P, Heger A, Herringa J, Hughes D, Jimenez RC, Kille P, Korpelainen E, Kumuthini J, Lewitter F, MacLean D, Martinez SA, McGrath A, Michalopoulos I, Mulder N, Ouellette BF, Palagi PM, Pearson WR, Qi W, Romano P, Rother K, Sansone SA, Schneider MV, Schonbach C, Tastan-Bishop O, Trelles O, Twells R, van Gelder CW, Via A, Vriend G, Warnow T, Watson M, Westervelt N, Zanzoni A., PLoS Comput. Biol. 11(4), 2015
PMID: 25856076


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28430873
PubMed | Europe PMC

Suchen in

Google Scholar