A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle

Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T, Mittag M (2017)
Plant Physiology 174(1): 185-201.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Müller, Nico; Wenzel, Sandra; Zou, Yong; Künzel, Sandra; Sasso, Severin; Weiß, Daniel; Prager, Katja; Grossman, Arthur; Kottke, TilmanUniBi ; Mittag, Maria
Erscheinungsjahr
2017
Zeitschriftentitel
Plant Physiology
Band
174
Ausgabe
1
Seite(n)
185-201
ISSN
0032-0889, 1532-2548
Page URI
https://pub.uni-bielefeld.de/record/2910638

Zitieren

Müller N, Wenzel S, Zou Y, et al. A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle. Plant Physiology. 2017;174(1):185-201.
Müller, N., Wenzel, S., Zou, Y., Künzel, S., Sasso, S., Weiß, D., Prager, K., et al. (2017). A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle. Plant Physiology, 174(1), 185-201. doi:10.1104/pp.17.00349
Müller, N., Wenzel, S., Zou, Y., Künzel, S., Sasso, S., Weiß, D., Prager, K., Grossman, A., Kottke, T., and Mittag, M. (2017). A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle. Plant Physiology 174, 185-201.
Müller, N., et al., 2017. A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle. Plant Physiology, 174(1), p 185-201.
N. Müller, et al., “A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle”, Plant Physiology, vol. 174, 2017, pp. 185-201.
Müller, N., Wenzel, S., Zou, Y., Künzel, S., Sasso, S., Weiß, D., Prager, K., Grossman, A., Kottke, T., Mittag, M.: A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle. Plant Physiology. 174, 185-201 (2017).
Müller, Nico, Wenzel, Sandra, Zou, Yong, Künzel, Sandra, Sasso, Severin, Weiß, Daniel, Prager, Katja, Grossman, Arthur, Kottke, Tilman, and Mittag, Maria. “A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle”. Plant Physiology 174.1 (2017): 185-201.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation.
Franz-Badur S, Penner A, Straß S, von Horsten S, Linne U, Essen LO., Sci Rep 9(1), 2019
PMID: 31289290
Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp.
Poliner E, Farré EM, Benning C., Plant Cell Rep 37(10), 2018
PMID: 29511798
A giant type I polyketide synthase participates in zygospore maturation in Chlamydomonas reinhardtii.
Heimerl N, Hommel E, Westermann M, Meichsner D, Lohr M, Hertweck C, Grossman AR, Mittag M, Sasso S., Plant J 95(2), 2018
PMID: 29729034
Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii.
Franz S, Ignatz E, Wenzel S, Zielosko H, Putu EPGN, Maestre-Reyna M, Tsai MD, Yamamoto J, Mittag M, Essen LO., Nucleic Acids Res 46(15), 2018
PMID: 30032195
From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature.
Sasso S, Stibor H, Mittag M, Grossman AR., Elife 7(), 2018
PMID: 30382941
ROC75 is an Attenuator for the Circadian Clock that Controls LHCSR3 Expression.
Kamrani YY, Matsuo T, Mittag M, Minagawa J., Plant Cell Physiol 59(12), 2018
PMID: 30184184
An Animal-Like Cryptochrome Controls the Chlamydomonas Sexual Cycle.
Zou Y, Wenzel S, Müller N, Prager K, Jung EM, Kothe E, Kottke T, Mittag M., Plant Physiol 174(3), 2017
PMID: 28468769
Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).
Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collén J, Dittami SM, Gachon CMM, Green BR, Karpowicz SJ, Kim JW, Kudahl UJ, Lin S, Michel G, Mittag M, Olson BJSC, Pangilinan JL, Peng Y, Qiu H, Shu S, Singer JT, Smith AG, Sprecher BN, Wagner V, Wang W, Wang ZY, Yan J, Yarish C, Zäuner-Riek S, Zhuang Y, Zou Y, Lindquist EA, Grimwood J, Barry KW, Rokhsar DS, Schmutz J, Stiller JW, Grossman AR, Prochnik SE., Proc Natl Acad Sci U S A 114(31), 2017
PMID: 28716924
Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9.
Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P., Plant Cell 29(10), 2017
PMID: 28978758
Bilin-Dependent Photoacclimation in Chlamydomonas reinhardtii.
Wittkopp TM, Schmollinger S, Saroussi S, Hu W, Zhang W, Fan Q, Gallaher SD, Leonard MT, Soubeyrand E, Basset GJ, Merchant SS, Grossman AR, Duanmu D, Lagarias JC., Plant Cell 29(11), 2017
PMID: 29084873
The Influence of a Cryptochrome on the Gene Expression Profile in the Diatom Phaeodactylum tricornutum under Blue Light and in Darkness.
König S, Eisenhut M, Bräutigam A, Kurz S, Weber APM, Büchel C., Plant Cell Physiol 58(11), 2017
PMID: 29016997

72 References

Daten bereitgestellt von Europe PubMed Central.

Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E., Proc. Natl. Acad. Sci. U.S.A. 100(24), 2003
PMID: 14615590
Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants.
Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, de Montaigu A, Higuera JJ, Prior M, Galvan A, Fernandez E, Grossman AR., Plant Methods 7(), 2011
PMID: 21794168
The biological clock of Chlamydomonas reinhardii in space.
Mergenhagen D, Mergenhagen E., Eur. J. Cell Biol. 43(2), 1987
PMID: 3595632
Sensing the light environment in plants: photoreceptors and early signaling steps.
Galvao VC, Fankhauser C., Curr. Opin. Neurobiol. 34(), 2015
PMID: 25638281
A blue-light photoreceptor mediates the feedback regulation of photosynthesis.
Petroutsos D, Tokutsu R, Maruyama S, Flori S, Greiner A, Magneschi L, Cusant L, Kottke T, Mittag M, Hegemann P, Finazzi G, Minagawa J., Nature 537(7621), 2016
PMID: 27626383
Photoperiodic control of germination in the unicell Chlamydomonas.
Suzuki L, Johnson CH., Naturwissenschaften 89(5), 2002
PMID: 12135086
The Chlamydomonas genome reveals the evolution of key animal and plant functions.
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR., Science 318(5848), 2007
PMID: 17932292
Phototropin blue-light receptors.
Christie JM., Annu Rev Plant Biol 58(), 2007
PMID: 17067285
Searching for a photocycle of the cryptochrome photoreceptors.
Liu B, Liu H, Zhong D, Lin C., Curr. Opin. Plant Biol. 13(5), 2010
PMID: 20943427
Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses.
Govorunova EG, Jung KH, Sineshchekov OA, Spudich JL., Biophys. J. 86(4), 2004
PMID: 15041672
Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.
Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR., J. Biol. Chem. 282(35), 2007
PMID: 17565990
Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity.
Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A., EMBO Rep. 10(6), 2009
PMID: 19424294
Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms.
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A., J. Plant Physiol. 172(), 2014
PMID: 25087009
Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene.
Zorin B, Lu Y, Sizova I, Hegemann P., Gene 432(1-2), 2008
PMID: 19121376
A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock.
Iliev D, Voytsekh O, Schmidt EM, Fiedler M, Nykytenko A, Mittag M., Plant Physiol. 142(2), 2006
PMID: 16920878
UV-B Perception and Acclimation in Chlamydomonas reinhardtii.
Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, Schmid-Siegert E, Goldschmidt-Clermont M, Ulm R., Plant Cell 28(4), 2016
PMID: 27020958
Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas.
Pootakham W, Gonzalez-Ballester D, Grossman AR., Plant Physiol. 153(4), 2010
PMID: 20498339
Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F., Curr. Biol. 19(5), 2009
PMID: 19230666
Phase-resetting mechanism of the circadian clock in Chlamydomonas reinhardtii.
Niwa Y, Matsuo T, Onai K, Kato D, Tachikawa M, Ishiura M., Proc. Natl. Acad. Sci. U.S.A. 110(33), 2013
PMID: 23898163
Sex determination in Chlamydomonas.
Goodenough U, Lin H, Lee JH., Semin. Cell Dev. Biol. 18(3), 2007
PMID: 17643326
A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
Beel B, Prager K, Spexard M, Sasso S, Weiss D, Muller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M., Plant Cell 24(7), 2012
PMID: 22773746
A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light.
Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Tran Nguyen TM, Kateriya S, Kennis JT, Hildebrandt P, Hegemann P., J. Biol. Chem. 287(47), 2012
PMID: 23027869
Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY.
Oldemeyer S, Franz S, Wenzel S, Essen LO, Mittag M, Kottke T., J. Biol. Chem. 291(27), 2016
PMID: 27189948
Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes.
Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Sanchez F, Plaza P, Martin M, Falciatore A, Todo T, Bouget FY, Bowler C., Plant Cell Environ. 33(10), 2010
PMID: 20444223
Channelrhodopsins: directly light-gated cation channels.
Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E., Biochem. Soc. Trans. 33(Pt 4), 2005
PMID: 16042615
The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits.
Zhao B, Schneid C, Iliev D, Schmidt EM, Wagner V, Wollnik F, Mittag M., Eukaryotic Cell 3(3), 2004
PMID: 15190002
The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to?
Mittag M, Kiaulehn S, Johnson CH., Plant Physiol. 137(2), 2005
PMID: 15710681
Molecular cloning and genomic organization of a gene for luciferin-binding protein from the dinoflagellate Gonyaulax polyedra.
Lee DH, Mittag M, Sczekan S, Morse D, Hastings JW., J. Biol. Chem. 268(12), 1993
PMID: 8473328
Neurospora illuminates fungal photoreception.
Chen CH, Dunlap JC, Loros JJ., Fungal Genet. Biol. 47(11), 2010
PMID: 20637887
Dynamic Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its Life Cycle.
Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, Fitz-Gibbon S, Gallaher SD, Merchant SS, Umen J, Pellegrini M., Plant Physiol. 169(4), 2015
PMID: 26450704
A systematic forward genetic analysis identified components of the Chlamydomonas circadian system.
Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M., Genes Dev. 22(7), 2008
PMID: 18334618
Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum.
Schellenberger Costa B, Sachse M, Jungandreas A, Bartulos CR, Gruber A, Jakob T, Kroth PG, Wilhelm C., PLoS ONE 8(9), 2013
PMID: 24073211
The circadian system in higher plants.
Harmer SL., Annu Rev Plant Biol 60(), 2009
PMID: 19575587
Algal photoreceptors: in vivo functions and potential applications.
Kianianmomeni A, Hallmann A., Planta 239(1), 2013
PMID: 24081482
Algal sensory photoreceptors.
Hegemann P., Annu Rev Plant Biol 59(), 2008
PMID: 18444900
Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
Langenbacher T, Immeln D, Dick B, Kottke T., J. Am. Chem. Soc. 131(40), 2009
PMID: 19754110
AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum).
Huysman MJ, Fortunato AE, Matthijs M, Costa BS, Vanderhaeghen R, Van den Daele H, Sachse M, Inze D, Bowler C, Kroth PG, Wilhelm C, Falciatore A, Vyverman W, De Veylder L., Plant Cell 25(1), 2013
PMID: 23292736
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Genes expressed during sexual differentiation of Chlamydomonas reinhardtii.
von Gromoff ED, Beck CF., Mol. Gen. Genet. 241(3-4), 1993
PMID: 8246895
Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements.
Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G., Plant Cell 18(8), 2006
PMID: 16798888
AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles.
Takahashi F, Yamagata D, Ishikawa M, Fukamatsu Y, Ogura Y, Kasahara M, Kiyosue T, Kikuyama M, Wada M, Kataoka H., Proc. Natl. Acad. Sci. U.S.A. 104(49), 2007
PMID: 18003911
Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria.
Kondo T, Strayer CA, Kulkarni RD, Taylor W, Ishiura M, Golden SS, Johnson CH., Proc. Natl. Acad. Sci. U.S.A. 90(12), 1993
PMID: 8516317
Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.
Nohr D, Franz S, Rodriguez R, Paulus B, Essen LO, Weber S, Schleicher E., Biophys. J. 111(2), 2016
PMID: 27463133
News about cryptochrome photoreceptors in algae.
Beel B, Muller N, Kottke T, Mittag M., Plant Signal Behav 8(2), 2012
PMID: 23154511
A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Buchel C., FEBS J. 281(9), 2014
PMID: 24628952

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28360233
PubMed | Europe PMC

Suchen in

Google Scholar