High Dimensional Matrix Relevance Learning
Schleif F-M, Villmann T, Zhu X (2015)
In: 2014 IEEE International Conference on Data Mining Workshop. Piscataway, NJ: IEEE.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schleif, Frank-MichaelUniBi ;
Villmann, Thomas;
Zhu, Xibin
Einrichtung
Abstract / Bemerkung
In supervised learning the parameters of a parametric Euclidean distance or mahalanobis distance can be effectively learned by so called Matrix Relevance Learning. This adaptation is not only useful to improve the discrimination capabilities of the model, but also to identify relevant features or relevant correlated features in the input data. Classical Matrix Relevance Learning scales quadratic with the number of input dimensions M and becomes prohibitive if M exceeds some thousand input features. We address Matrix Relevance Learning for data with a very large number of input dimensions. Such high dimensional data occur frequently in the life sciences domain e.g. For microarray or spectral data. We derive two respective approximation schemes and show exemplarily the implementation in Generalized Matrix Relevance Learning (GMLVQ) for classification problems. The first approximation scheme is based on Limited Rank Matrix Approximation (LiRaM) LiRaM is a random subspace projection technique which was formerly mainly considered for visualization purposes. The second novel approximation scheme is based on the Nystroem approximation and is exact if the number of Eigen values equals the rank of the Relevance Matrix. Using multiple benchmark problems, we demonstrate that the training process yields fast low rank approximations of the relevance matrices without harming the generalization ability. The approaches can be used to identify discriminative features for high dimensional data sets.
Erscheinungsjahr
2015
Titel des Konferenzbandes
2014 IEEE International Conference on Data Mining Workshop
Konferenz
2014 IEEE International Conference on Data Mining Workshop
Konferenzort
Shenzhen, China
Konferenzdatum
2014-12-14 – 2014-12-14
ISBN
978-1-4799-4274-9,
978-1-4799-4275-6
Page URI
https://pub.uni-bielefeld.de/record/2910619
Zitieren
Schleif F-M, Villmann T, Zhu X. High Dimensional Matrix Relevance Learning. In: 2014 IEEE International Conference on Data Mining Workshop. Piscataway, NJ: IEEE; 2015.
Schleif, F. - M., Villmann, T., & Zhu, X. (2015). High Dimensional Matrix Relevance Learning. 2014 IEEE International Conference on Data Mining Workshop Piscataway, NJ: IEEE. doi:10.1109/icdmw.2014.15
Schleif, Frank-Michael, Villmann, Thomas, and Zhu, Xibin. 2015. “High Dimensional Matrix Relevance Learning”. In 2014 IEEE International Conference on Data Mining Workshop. Piscataway, NJ: IEEE.
Schleif, F. - M., Villmann, T., and Zhu, X. (2015). “High Dimensional Matrix Relevance Learning” in 2014 IEEE International Conference on Data Mining Workshop (Piscataway, NJ: IEEE).
Schleif, F.-M., Villmann, T., & Zhu, X., 2015. High Dimensional Matrix Relevance Learning. In 2014 IEEE International Conference on Data Mining Workshop. Piscataway, NJ: IEEE.
F.-M. Schleif, T. Villmann, and X. Zhu, “High Dimensional Matrix Relevance Learning”, 2014 IEEE International Conference on Data Mining Workshop, Piscataway, NJ: IEEE, 2015.
Schleif, F.-M., Villmann, T., Zhu, X.: High Dimensional Matrix Relevance Learning. 2014 IEEE International Conference on Data Mining Workshop. IEEE, Piscataway, NJ (2015).
Schleif, Frank-Michael, Villmann, Thomas, and Zhu, Xibin. “High Dimensional Matrix Relevance Learning”. 2014 IEEE International Conference on Data Mining Workshop. Piscataway, NJ: IEEE, 2015.