Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method

Sola A, Bougiatioti P, Kuepferling M, Meier D, Reiss G, Pasquale M, Kuschel T, Basso V (2017)
Scientific Reports 7(1): 46752.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Sola, Alessandro; Bougiatioti, PanagiotaUniBi; Kuepferling, Michaela; Meier, DanielUniBi ; Reiss, GünterUniBi ; Pasquale, Massimo; Kuschel, TimoUniBi ; Basso, Vittorio
Abstract / Bemerkung
The determination of the longitudinal spin Seebeck effect (LSSE) coefficient is currently plagued by a large uncertainty due to the poor reproducibility of the experimental conditions used in its measurement. In this work we present a detailed analysis of two different methods used for the determination of the LSSE coefficient. We have performed LSSE experiments in different laboratories, by using different setups and employing both the temperature difference method and the heat flux method. We found that the lack of reproducibility can be mainly attributed to the thermal contact resistance between the sample and the thermal baths which generate the temperature gradient. Due to the variation of the thermal resistance, we found that the scaling of the LSSE voltage to the heat flux through the sample rather than to the temperature difference across the sample greatly reduces the uncertainty. The characteristics of a single YIG/Pt LSSE device obtained with two different setups was (1.143 ± 0.007) 10^−7 Vm/W and (1.101 ± 0.015) 10^−7 Vm/W with the heat flux method and (2.313 ± 0.017) 10^−7 V/K and (4.956 ± 0.005) 10^−7 V/K with the temperature difference method. This shows that systematic errors can be considerably reduced with the heat flux method.
Erscheinungsjahr
2017
Zeitschriftentitel
Scientific Reports
Band
7
Ausgabe
1
Art.-Nr.
46752
ISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2910589

Zitieren

Sola A, Bougiatioti P, Kuepferling M, et al. Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method. Scientific Reports. 2017;7(1): 46752.
Sola, A., Bougiatioti, P., Kuepferling, M., Meier, D., Reiss, G., Pasquale, M., Kuschel, T., et al. (2017). Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method. Scientific Reports, 7(1), 46752. https://doi.org/10.1038/srep46752
Sola, Alessandro, Bougiatioti, Panagiota, Kuepferling, Michaela, Meier, Daniel, Reiss, Günter, Pasquale, Massimo, Kuschel, Timo, and Basso, Vittorio. 2017. “Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method”. Scientific Reports 7 (1): 46752.
Sola, A., Bougiatioti, P., Kuepferling, M., Meier, D., Reiss, G., Pasquale, M., Kuschel, T., and Basso, V. (2017). Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method. Scientific Reports 7:46752.
Sola, A., et al., 2017. Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method. Scientific Reports, 7(1): 46752.
A. Sola, et al., “Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method”, Scientific Reports, vol. 7, 2017, : 46752.
Sola, A., Bougiatioti, P., Kuepferling, M., Meier, D., Reiss, G., Pasquale, M., Kuschel, T., Basso, V.: Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method. Scientific Reports. 7, : 46752 (2017).
Sola, Alessandro, Bougiatioti, Panagiota, Kuepferling, Michaela, Meier, Daniel, Reiss, Günter, Pasquale, Massimo, Kuschel, Timo, and Basso, Vittorio. “Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method”. Scientific Reports 7.1 (2017): 46752.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Quantitative Disentanglement of the Spin Seebeck, Proximity-Induced, and Ferromagnetic-Induced Anomalous Nernst Effect in Normal-Metal-Ferromagnet Bilayers.
Bougiatioti P, Klewe C, Meier D, Manos O, Kuschel O, Wollschläger J, Bouchenoire L, Brown SD, Schmalhorst JM, Reiss G, Kuschel T., Phys Rev Lett 119(22), 2017
PMID: 29286760

37 References

Daten bereitgestellt von Europe PubMed Central.

Thermoelectricity: The ugly duckling.
Heremans JP., Nature 508(7496), 2014
PMID: 24740062
Thermoelectric cooling and power generation
DiSalvo FJ., Science 285(5428), 1999
PMID: 10426986
Robust longitudinal spin-Seebeck effect in Bi-YIG thin films.
Siegel G, Prestgard MC, Teng S, Tiwari A., Sci Rep 4(), 2014
PMID: 24651124
Observation of the spin Seebeck effect.
Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E., Nature 455(7214), 2008
PMID: 18843364
Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films.
Kirihara A, Kondo K, Ishida M, Ihara K, Iwasaki Y, Someya H, Matsuba A, Uchida K, Saitoh E, Yamamoto N, Kohmoto S, Murakami T., Sci Rep 6(), 2016
PMID: 26975208

AUTHOR UNKNOWN, 0
Spin caloritronics.
Bauer GE, Saitoh E, van Wees BJ., Nat Mater 11(5), 2012
PMID: 22522639

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Longitudinal spin Seebeck effect free from the proximity Nernst effect.
Kikkawa T, Uchida K, Shiomi Y, Qiu Z, Hou D, Tian D, Nakayama H, Jin XF, Saitoh E., Phys. Rev. Lett. 110(6), 2013
PMID: 23432302

AUTHOR UNKNOWN, 0
Transverse spin Seebeck effect versus anomalous and planar Nernst effects in Permalloy thin films.
Schmid M, Srichandan S, Meier D, Kuschel T, Schmalhorst JM, Vogel M, Reiss G, Strunk C, Back CH., Phys. Rev. Lett. 111(18), 2013
PMID: 24237554

AUTHOR UNKNOWN, 0
Intrinsic spin-dependent thermal transport.
Huang SY, Wang WG, Lee SF, Kwo J, Chien CL., Phys. Rev. Lett. 107(21), 2011
PMID: 22181905

AUTHOR UNKNOWN, 0
Length Scale of the Spin Seebeck Effect.
Kehlberger A, Ritzmann U, Hinzke D, Guo EJ, Cramer J, Jakob G, Onbasli MC, Kim DH, Ross CA, Jungfleisch MB, Hillebrands B, Nowak U, Klaui M., Phys. Rev. Lett. 115(9), 2015
PMID: 26371671

AUTHOR UNKNOWN, 0
Local charge and spin currents in magnetothermal landscapes.
Weiler M, Althammer M, Czeschka FD, Huebl H, Wagner MS, Opel M, Imort IM, Reiss G, Thomas A, Gross R, Goennenwein ST., Phys. Rev. Lett. 108(10), 2012
PMID: 22463435

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient.
Reimer O, Meier D, Bovender M, Helmich L, Dreessen JO, Krieft J, Shestakov AS, Back CH, Schmalhorst JM, Hutten A, Reiss G, Kuschel T., Sci Rep 7(), 2017
PMID: 28094279

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Uchida, Phys. Rev. X 4(), 2014
Longitudinal spin Seebeck effect: from fundamentals to applications.
Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T, Saitoh E., J Phys Condens Matter 26(34), 2014
PMID: 25105889
Material in PUB:
Publikation, die diesen PUB Eintrag enthält
Thermally induced spin currents
Kuschel T (2023)
Bielefeld: Universität Bielefeld.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28440288
PubMed | Europe PMC

Suchen in

Google Scholar