A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources

Jorge J, Perez F, Wendisch VF (2017)
Bioresource Technology 245(SI): 1701–1709.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2017
Zeitschriftentitel
Bioresource Technology
Band
245
Ausgabe
SI
Seite(n)
1701–1709
ISSN
0960-8524
eISSN
1873-2976
Page URI
https://pub.uni-bielefeld.de/record/2910571

Zitieren

Jorge J, Perez F, Wendisch VF. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Bioresource Technology. 2017;245(SI):1701–1709.
Jorge, J., Perez, F., & Wendisch, V. F. (2017). A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Bioresource Technology, 245(SI), 1701–1709. doi:10.1016/j.biortech.2017.04.108
Jorge, João, Perez, Fernando, and Wendisch, Volker F. 2017. “A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources”. Bioresource Technology 245 (SI): 1701–1709.
Jorge, J., Perez, F., and Wendisch, V. F. (2017). A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Bioresource Technology 245, 1701–1709.
Jorge, J., Perez, F., & Wendisch, V.F., 2017. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Bioresource Technology, 245(SI), p 1701–1709.
J. Jorge, F. Perez, and V.F. Wendisch, “A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources”, Bioresource Technology, vol. 245, 2017, pp. 1701–1709.
Jorge, J., Perez, F., Wendisch, V.F.: A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Bioresource Technology. 245, 1701–1709 (2017).
Jorge, João, Perez, Fernando, and Wendisch, Volker F. “A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources”. Bioresource Technology 245.SI (2017): 1701–1709.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
Baritugo KA, Kim HT, David Y, Choi JI, Hong SH, Jeong KJ, Choi JH, Joo JC, Park SJ., Appl Microbiol Biotechnol 102(9), 2018
PMID: 29557518
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.
Cheng J, Chen P, Song A, Wang D, Wang Q., J Ind Microbiol Biotechnol 45(8), 2018
PMID: 29654382
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway.
Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF., Front Microbiol 9(), 2018
PMID: 30425699
Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate.
Knorr S, Sinn M, Galetskiy D, Williams RM, Wang C, Müller N, Mayans O, Schleheck D, Hartig JS., Nat Commun 9(1), 2018
PMID: 30498244

54 References

Daten bereitgestellt von Europe PubMed Central.

Taxonomical studies on glutamicum acid producing bacteria
Abe, J. Gen. Appl. Microbiol. 13(), 1967
Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine.
Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, Bremer E, Wittmann C., Microb. Cell Fact. 12(), 2013
PMID: 24228689
Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum.
Bellmann A, Vrljic M, Patek M, Sahm H, Kramer R, Eggeling L., Microbiology (Reading, Engl.) 147(Pt 7), 2001
PMID: 11429454

Eggeling, 2005
Catabolism of L-lysine by Pseudomonas aeruginosa.
Fothergill JC, Guest JR., J. Gen. Microbiol. 99(1), 1977
PMID: 405455
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum.
Huhn S, Jolkver E, Kramer R, Marin K., Appl. Microbiol. Biotechnol. 89(2), 2010
PMID: 20809072
Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(5), 2007
PMID: 17965859
Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family.
Kennerknecht N, Sahm H, Yen MR, Patek M, Saier Jr MH Jr, Eggeling L., J. Bacteriol. 184(14), 2002
PMID: 12081967
Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli.
Li Z, Xu J, Jiang T, Ge Y, Liu P, Zhang M, Su Z, Gao C, Ma C, Xu P., Sci Rep 6(), 2016
PMID: 27510748
Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.
Lubitz D, Jorge JM, Perez-Garcia F, Taniguchi H, Wendisch VF., Appl. Microbiol. Biotechnol. 100(19), 2016
PMID: 27350619
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.
Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY., Metab. Eng. 16(), 2012
PMID: 23246520
High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis.
Park SJ, Oh YH, Noh W, Kim HY, Shin JH, Lee EG, Lee S, David Y, Baylon MG, Song BK, Jegal J, Lee SY, Lee SH., Biotechnol J 9(10), 2014
PMID: 25124937
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Perez-Garcia F, Peters-Wendisch P, Wendisch VF., Appl. Microbiol. Biotechnol. 100(18), 2016
PMID: 27345060
Fermentative production of l-pipecolic acid from glucose and alternative carbon sources
Pérez-García, Biotechnol. J. (), 2017
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405
Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440.
Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL., J. Bacteriol. 187(21), 2005
PMID: 16237033
Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J., Microb. Cell Fact. 15(1), 2016
PMID: 27618862

Sambrook, 2001
Molecular cloning and characterization of Escherichia coli K12 ygjG gene.
Samsonova NN, Smirnov SV, Altman IB, Ptitsyn LR., BMC Microbiol. 3(1), 2003
PMID: 12617754
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY., Microb. Cell Fact. 15(1), 2016
PMID: 27717386
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Bruhl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Kramer R, Seibold G, Frunzke J, Kalinowski J, Ruckert C, Wendisch VF, Noack S., Biotechnol J 10(2), 2014
PMID: 25139579
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch VF, Jorge JMP, Perez-Garcia F, Sgobba E., World J. Microbiol. Biotechnol. 32(6), 2016
PMID: 27116971
Putrescine oxidase (Micrococcus rubens)
Yamada, 1971
Identification and characterization of γ-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum.
Zhao Z, Ding JY, Ma WH, Zhou NY, Liu SJ., Appl. Environ. Microbiol. 78(8), 2012
PMID: 22307305
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28522202
PubMed | Europe PMC

Suchen in

Google Scholar