Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant

Stolpe C, Giehren F, Krämer U, Müller C (2017)
Phytochemistry 139(7): 109-117.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Stolpe, ClemensUniBi; Giehren, Franziska; Krämer, Ute; Müller, CarolineUniBi
Alternativer Titel
Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant
Abstract / Bemerkung
Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences.
Stichworte
Arabidopsis halleri; Brassicaceae; Glucosinolates; Induction; Leaf age; Myzus persicae; Optimal defence
Erscheinungsjahr
2017
Zeitschriftentitel
Phytochemistry
Band
139
Ausgabe
7
Seite(n)
109-117
ISSN
0031-9422
Page URI
https://pub.uni-bielefeld.de/record/2910548

Zitieren

Stolpe C, Giehren F, Krämer U, Müller C. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytochemistry. 2017;139(7):109-117.
Stolpe, C., Giehren, F., Krämer, U., & Müller, C. (2017). Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytochemistry, 139(7), 109-117. doi:org/10.1016/j.phytochem.2017.04.010
Stolpe, Clemens, Giehren, Franziska, Krämer, Ute, and Müller, Caroline. 2017. “Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant”. Phytochemistry 139 (7): 109-117.
Stolpe, C., Giehren, F., Krämer, U., and Müller, C. (2017). Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytochemistry 139, 109-117.
Stolpe, C., et al., 2017. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytochemistry, 139(7), p 109-117.
C. Stolpe, et al., “Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant”, Phytochemistry, vol. 139, 2017, pp. 109-117.
Stolpe, C., Giehren, F., Krämer, U., Müller, C.: Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytochemistry. 139, 109-117 (2017).
Stolpe, Clemens, Giehren, Franziska, Krämer, Ute, and Müller, Caroline. “Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant”. Phytochemistry 139.7 (2017): 109-117.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transcriptome-wide comparison of selenium hyperaccumulator and nonaccumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome.
Wang J, Cappa JJ, Harris JP, Edger PP, Zhou W, Pires JC, Adair M, Unruh SA, Simmons MP, Schiavon M, Pilon-Smits EAH., Plant Biotechnol J (), 2018
PMID: 29412503
The Role of Heavy Metals in Plant Response to Biotic Stress.
Morkunas I, Woźniak A, Mai VC, Rucińska-Sobkowiak R, Jeandet P., Molecules 23(9), 2018
PMID: 30208652

68 References

Daten bereitgestellt von Europe PubMed Central.

Glucosinolate structures in evolution.
Agerbirk N, Olsen CE., Phytochemistry 77(), 2012
PMID: 22405332
Macromolecules in phloem exudates--a review.
Atkins CA, Smith PM, Rodriguez-Medina C., Protoplasma 248(1), 2010
PMID: 21057827

Bates, 0
The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions
Boyd, Plant Soil 293(), 2007
Long-distance phloem transport of glucosinolates in Arabidopsis.
Chen S, Petersen BL, Olsen CE, Schulz A, Halkier BA., Plant Physiol. 127(1), 2001
PMID: 11553747
Testing the joint effects hypothesis of elemental defense using Spodoptera exigua.
Cheruiyot DJ, Boyd RS, Moar W., J. Chem. Ecol. 41(2), 2015
PMID: 25712748
Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens.
Divol F, Vilaine F, Thibivilliers S, Amselem J, Palauqui JC, Kusiak C, Dinant S., Plant Mol. Biol. 57(4), 2005
PMID: 15821978

Fox, 2011
Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy
Gardea-Torresdey, Coord. Chem. Rev. 249(), 2005
Root herbivores and detritivores shape above-ground multitrophic assemblage through plant-mediated effects
Gonzáles-Megías, J. Animal Ecol. 79(), 2010
The effects of heavy metal contamination in host plants to cabbage aphid performance and morphology
Görür, Fresenius Environ. Bull. 16(), 2007
Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana.
Guelette BS, Benning UF, Hoffmann-Benning S., J. Exp. Bot. 63(10), 2012
PMID: 22442409
Aphid-plant interactions: a review
Guerrieri, J. Plant Interact. 3(), 2008
Biology and biochemistry of glucosinolates.
Halkier BA, Gershenzon J., Annu Rev Plant Biol 57(), 2006
PMID: 16669764
Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity.
Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EAH., New Phytol. 162(3), 2004
PMID: IND43668251
Heterodera schachtii nematodes interfere with aphid-plant relations on Brassica oleracea.
Hol WH, De Boer W, Termorshuizen AJ, Meyer KM, Schneider JH, Van Der Putten WH, Van Dam NM., J. Chem. Ecol. 39(9), 2013
PMID: 24014097
Role of glucosinolates in insect-plant relationships and multitrophic interactions.
Hopkins RJ, van Dam NM, van Loon JJ., Annu. Rev. Entomol. 54(), 2009
PMID: 18811249
Enhancement of Phloem exudation from cut petioles by chelating agents.
King RW, Zeevaart JA., Plant Physiol. 53(1), 1974
PMID: 16658661
Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid.
Kos M, Houshyani B, Achhami BB, Wietsma R, Gols R, Weldegergis BT, Kabouw P, Bouwmeester HJ, Vet LE, Dicke M, van Loon JJ., J. Chem. Ecol. 38(1), 2012
PMID: 22258357
Metal hyperaccumulation in plants.
Kramer U., Annu Rev Plant Biol 61(), 2010
PMID: 20192749

Larcher, 1994
Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii.
Lu L, Tian S, Zhang J, Yang X, Labavitch JM, Webb SM, Latimer M, Brown PH., New Phytol. 198(3), 2013
PMID: 23421478
Defensive weapons and defense signals in plants: some metabolites serve both roles.
Maag D, Erb M, Kollner TG, Gershenzon J., Bioessays 37(2), 2014
PMID: 25389065
Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic.
Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JI., Curr. Opin. Plant Biol. 14(5), 2011
PMID: 21820943
The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants
Na, Environ. Exp. Bot. 72(), 2011
Heavy metals, occurrence and toxicity for plants: a review
Nagajyoti, Environ. Chem. Lett. 8(), 2010
Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates.
Noret N, Meerts P, Tolra R, Poschenrieder C, Barcelo J, Escarre J., New Phytol. 165(3), 2005
PMID: 15720687

Oksanen, 0
Can metals defend plants against biotic stress?
Poschenrieder C, Tolra R, Barcelo J., Trends Plant Sci. 11(6), 2006
PMID: 16697693

R, 2014

Reeves, 2000
Phosphorus Uptake by Plants: From Soil to Cell
Schachtman DP, Reid RJ, Ayling SM., Plant Physiol. 116(2), 1998
PMID: 9490752
Phloem mobility of magnesium.
Steucek GL, Koontz HV., Plant Physiol. 46(1), 1970
PMID: 16657420
Heavy metal (hyper)accumulation in leaves of Arabidopsis halleri is accompanied by a reduced performance of herbivores and shifts in leaf glucosinolate and element concentrations
Stolpe, Environ. Exp. Bot. 133(), 2017
Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish
Strauss, J. Ecol. 92(), 2004
Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance
Textor, Phytochem. Rev. 8(), 2009
Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii.
Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P., Plant Physiol. 157(4), 2011
PMID: 22025609
Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense
Tolrà, Plant Soil 288(), 2006
Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens.
Tolra RP, Poschenrieder C, Alonso R, Barcelo D, Barcelo J., New Phytol. 151(3), 2001
PMID: IND23236723
The sink-source transition in leaves
Turgeon, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40(), 1989
Hexoses as phloem transport sugars: the end of a dogma?
van Bel AJ, Hess PH., J. Exp. Bot. 59(2), 2008
PMID: 18332226
Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE.
Vogel-Mikus K, Simcic J, Pelicon P, Budnar M, Kump P, Necemer M, Mesjasz-Przybylowicz J, Przybylowicz WJ, Regvar M., Plant Cell Environ. 31(10), 2008
PMID: 18643900
The critical role of potassium in plant stress response.
Wang M, Zheng Q, Shen Q, Guo S., Int J Mol Sci 14(4), 2013
PMID: 23549270
Free amino Acid composition of leaf exudates and Phloem sap : a comparative study in oats and barley.
Weibull J, Ronquist F, Brishammar S., Plant Physiol. 92(1), 1990
PMID: 16667250
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28437705
PubMed | Europe PMC

Suchen in

Google Scholar