Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy

Chamberlain TW, Biskupek J, Skowron ST, Markevich AV, Kurasch S, Reimer O, Walker KE, Rance GA, Feng X, Muellen K, Turchanin A, et al. (2017)
ACS NANO 11(3): 2509-2520.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chamberlain, Thomas W.; Biskupek, Johannes; Skowron, Stephen T.; Markevich, Alexander V.; Kurasch, Simon; Reimer, OliverUniBi; Walker, Kate E.; Rance, Graham A.; Feng, Xinliang; Muellen, Klaus; Turchanin, Andrey; Lebedeva, Maria A.
Alle
Abstract / Bemerkung
We report an approach, named chemTEM, to follow chemical transformations at the single-molecule level with the electron beam of a transmission electron microscope (TEM) applied as both a tunable source of energy and a sub-angstrom imaging probe. Deposited on graphene, disk-shaped perchlorocoronene molecules are precluded from intermolecular interactions. This allows monomolecular transformations to be studied at the single-molecule level in real time and reveals chlorine elimination and reactive aryne formation as a key initial stage of multistep reactions initiated by the 80 keV e-beam. Under the same conditions, perchlorocoronene confined within a nanotube cavity, where the molecules are situated in very close proximity to each other, enables imaging of intermolecular reactions, starting with the Diels Alder cycloaddition of a generated aryne, followed by rearrangement of the angular adduct to a planar polyaromatic structure and the formation of a perchlorinated zigzag nanoribbon of graphene as the final product. ChemTEM enables the entire process of polycondensation, including the formation of metastable intermediates, to be captured in a one-shot "movie". A molecule with a similar size and shape but with a different chemical composition, octathio [8] circulene, under the same conditions undergoes another type of polycondensation via thiyl biradical generation and subsequent reaction leading to polythiophene nanoribbons with irregular edges incorporating bridging sulfur atoms. Graphene or carbon nanotubes supporting the individual molecules during chemTEM studies ensure that the elastic interactions of the molecules with the e-beam are the dominant forces that initiate and drive the reactions we image. Our ab initio DFT calculations explicitly incorporating the e-beam in the theoretical model correlate with the chemTEM observations and give a mechanism for direct control not only of the type of the reaction but also of the reaction rate. Selection of the appropriate e-beam energy and control of the dose rate in chemTEM enabled imaging of reactions on a time frame commensurate with TEM image capture rates, revealing atomistic mechanisms of previously unknown processes.
Stichworte
transmission electron microscopy; carbon nanotube; graphene; single-molecule imaging; single-molecule reaction
Erscheinungsjahr
2017
Zeitschriftentitel
ACS NANO
Band
11
Ausgabe
3
Seite(n)
2509-2520
ISSN
1936-0851
eISSN
1936-086X
Page URI
https://pub.uni-bielefeld.de/record/2910500

Zitieren

Chamberlain TW, Biskupek J, Skowron ST, et al. Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy. ACS NANO. 2017;11(3):2509-2520.
Chamberlain, T. W., Biskupek, J., Skowron, S. T., Markevich, A. V., Kurasch, S., Reimer, O., Walker, K. E., et al. (2017). Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy. ACS NANO, 11(3), 2509-2520. doi:10.1021/acsnano.6b08228
Chamberlain, Thomas W., Biskupek, Johannes, Skowron, Stephen T., Markevich, Alexander V., Kurasch, Simon, Reimer, Oliver, Walker, Kate E., et al. 2017. “Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy”. ACS NANO 11 (3): 2509-2520.
Chamberlain, T. W., Biskupek, J., Skowron, S. T., Markevich, A. V., Kurasch, S., Reimer, O., Walker, K. E., Rance, G. A., Feng, X., Muellen, K., et al. (2017). Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy. ACS NANO 11, 2509-2520.
Chamberlain, T.W., et al., 2017. Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy. ACS NANO, 11(3), p 2509-2520.
T.W. Chamberlain, et al., “Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy”, ACS NANO, vol. 11, 2017, pp. 2509-2520.
Chamberlain, T.W., Biskupek, J., Skowron, S.T., Markevich, A.V., Kurasch, S., Reimer, O., Walker, K.E., Rance, G.A., Feng, X., Muellen, K., Turchanin, A., Lebedeva, M.A., Majouga, A.G., Nenajdenko, V.G., Kaiser, U., Besley, E., Khlobystov, A.N.: Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy. ACS NANO. 11, 2509-2520 (2017).
Chamberlain, Thomas W., Biskupek, Johannes, Skowron, Stephen T., Markevich, Alexander V., Kurasch, Simon, Reimer, Oliver, Walker, Kate E., Rance, Graham A., Feng, Xinliang, Muellen, Klaus, Turchanin, Andrey, Lebedeva, Maria A., Majouga, Alexander G., Nenajdenko, Valentin G., Kaiser, Ute, Besley, Elena, and Khlobystov, Andrei N. “Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy”. ACS NANO 11.3 (2017): 2509-2520.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

New Frontiers in Electron Beam-Driven Chemistry in and around Graphene.
Rummeli MH, Ta HQ, Mendes RG, Gonzalez-Martinez IG, Zhao L, Gao J, Fu L, Gemming T, Bachmatiuk A, Liu Z., Adv Mater 31(9), 2019
PMID: 29888408
Band gap modification and photoluminescence enhancement of graphene nanoribbon filled single-walled carbon nanotubes.
Chernov AI, Fedotov PV, Lim HE, Miyata Y, Liu Z, Sato K, Suenaga K, Shinohara H, Obraztsova ED., Nanoscale 10(6), 2018
PMID: 29369315
Reversible dispersion and release of carbon nanotubes via cooperative clamping interactions with hydrogen-bonded nanorings.
Chamorro R, de Juan-Fernández L, Nieto-Ortega B, Mayoral MJ, Casado S, Ruiz-González L, Pérez EM, González-Rodríguez D., Chem Sci 9(17), 2018
PMID: 29780548
Positive and negative regulation of carbon nanotube catalysts through encapsulation within macrocycles.
Blanco M, Nieto-Ortega B, de Juan A, Vera-Hidalgo M, López-Moreno A, Casado S, González LR, Sawada H, González-Calbet JM, Pérez EM., Nat Commun 9(1), 2018
PMID: 29991679
Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts.
Cao K, Zoberbier T, Biskupek J, Botos A, McSweeney RL, Kurtoglu A, Stoppiello CT, Markevich AV, Besley E, Chamberlain TW, Kaiser U, Khlobystov AN., Nat Commun 9(1), 2018
PMID: 30139935

43 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 2002

AUTHOR UNKNOWN, 1996
Direct imaging of covalent bond structure in single-molecule chemical reactions.
de Oteyza DG, Gorman P, Chen YC, Wickenburg S, Riss A, Mowbray DJ, Etkin G, Pedramrazi Z, Tsai HZ, Rubio A, Crommie MF, Fischer FR., Science 340(6139), 2013
PMID: 23722428
Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization.
Di Giovannantonio M, El Garah M, Lipton-Duffin J, Meunier V, Cardenas L, Fagot Revurat Y, Cossaro A, Verdini A, Perepichka DF, Rosei F, Contini G., ACS Nano 7(9), 2013
PMID: 23987501
Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface.
Hulsken B, Van Hameren R, Gerritsen JW, Khoury T, Thordarson P, Crossley MJ, Rowan AE, Nolte RJ, Elemans JA, Speller S., Nat Nanotechnol 2(5), 2007
PMID: 18654285
Direct visualization of surface-assisted two-dimensional diyne polycyclotrimerization.
Zhou H, Liu J, Du S, Zhang L, Li G, Zhang Y, Tang BZ, Gao HJ., J. Am. Chem. Soc. 136(15), 2014
PMID: 24689835
Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes.
Treier M, Pignedoli CA, Laino T, Rieger R, Mullen K, Passerone D, Fasel R., Nat Chem 3(1), 2010
PMID: 21160519
Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy.
Riss A, Paz AP, Wickenburg S, Tsai HZ, De Oteyza DG, Bradley AJ, Ugeda MM, Gorman P, Jung HS, Crommie MF, Rubio A, Fischer FR., Nat Chem 8(7), 2016
PMID: 27325094
Reaction Kinetics of Bond Rotationin Graphene
AUTHOR UNKNOWN, 2016
Imaging atomic-level random walk of a point defect in graphene.
Kotakoski J, Mangler C, Meyer JC., Nat Commun 5(), 2014
PMID: 24874455
Stability and dynamics of the tetravacancy in graphene.
Robertson AW, Lee GD, He K, Yoon E, Kirkland AI, Warner JH., Nano Lett. 14(3), 2014
PMID: 24588782
Trapping of metal atoms in vacancies of carbon nanotubes and graphene.
Rodriguez-Manzo JA, Cretu O, Banhart F., ACS Nano 4(6), 2010
PMID: 20499848
In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
Rodriguez-Manzo JA, Terrones M, Terrones H, Kroto HW, Sun L, Banhart F., Nat Nanotechnol 2(5), 2007
PMID: 18654289
Carbon nanotubes as high-pressure cylinders and nanoextruders.
Sun L, Banhart F, Krasheninnikov AV, Rodriguez-Manzo JA, Terrones M, Ajayan PM., Science 312(5777), 2006
PMID: 16728637
Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale.
Chamberlain TW, Meyer JC, Biskupek J, Leschner J, Santana A, Besley NA, Bichoutskaia E, Kaiser U, Khlobystov AN., Nat Chem 3(9), 2011
PMID: 21860464
Direct imaging of the structure, relaxation, and sterically constrained motion of encapsulated tungsten polyoxometalate lindqvist ions within carbon nanotubes.
Sloan J, Matthewman G, Dyer-Smith C, Sung AY, Liu Z, Suenaga K, Kirkland AI, Flahaut E., ACS Nano 2(5), 2008
PMID: 19206494
Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level.
Koshino M, Niimi Y, Nakamura E, Kataura H, Okazaki T, Suenaga K, Iijima S., Nat Chem 2(2), 2010
PMID: 21124402
Conformational analysis of single perfluoroalkyl chains by single-molecule real-time transmission electron microscopic imaging.
Harano K, Takenaga S, Okada S, Niimi Y, Yoshikai N, Isobe H, Suenaga K, Kataura H, Koshino M, Nakamura E., J. Am. Chem. Soc. 136(1), 2013
PMID: 24341551
Molecular Motionof Endohedral Fullerenes in Single-Walled Carbon Nanotubes
AUTHOR UNKNOWN, 2004
Nanofluidics. Observing liquid flow in nanotubes by 4D electron microscopy.
Lorenz UJ, Zewail AH., Science 344(6191), 2014
PMID: 24970082
Four-dimensional electron microscopy.
Zewail AH., Science 328(5975), 2010
PMID: 20378810
Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy.
van der Veen RM, Kwon OH, Tissot A, Hauser A, Zewail AH., Nat Chem 5(5), 2013
PMID: 23609090
Investigation of the Interactions and Bonding between Carbon and Group VIII Metals at the Atomic Scale.
Zoberbier T, Chamberlain TW, Biskupek J, Suyetin M, Majouga AG, Besley E, Kaiser U, Khlobystov AN., Small 12(12), 2016
PMID: 26848826
Isotope substitution extends the lifetime of organic molecules in transmission electron microscopy.
Chamberlain TW, Biskupek J, Skowron ST, Bayliss PA, Bichoutskaia E, Kaiser U, Khlobystov AN., Small 11(5), 2014
PMID: 25208335
Approaches to modelling irradiation-induced processes in transmission electron microscopy.
Skowron ST, Lebedeva IV, Popov AM, Bichoutskaia E., Nanoscale 5(15), 2013
PMID: 23783785
Direct transformation of graphene to fullerene.
Chuvilin A, Kaiser U, Bichoutskaia E, Besley NA, Khlobystov AN., Nat Chem 2(6), 2010
PMID: 20489712
Inclusionof Radiation Damage Dynamics in High-Resolution Transmission ElectronMicroscopy Image Simulations: the Example of Graphene
AUTHOR UNKNOWN, 2013
The atomistic mechanism of carbon nanotube cutting catalyzed by nickel under an electron beam.
Lebedeva IV, Chamberlain TW, Popov AM, Knizhnik AA, Zoberbier T, Biskupek J, Kaiser U, Khlobystov AN., Nanoscale 6(24), 2014
PMID: 25363681
Carbon Nanomembranes.
Turchanin A, Golzhauser A., Adv. Mater. Weinheim 28(29), 2016
PMID: 27281234
Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile.
Sarkar S, Bekyarova E, Niyogi S, Haddon RC., J. Am. Chem. Soc. 133(10), 2011
PMID: 21341649
Electron beam controlled covalent attachment of small organic molecules to graphene.
Markevich A, Kurasch S, Lehtinen O, Reimer O, Feng X, Mullen K, Turchanin A, Khlobystov AN, Kaiser U, Besley E., Nanoscale 8(5), 2016
PMID: 26757842
Organic chemistry of graphene: the Diels-Alder reaction.
Denis PA., Chemistry 19(46), 2013
PMID: 24115199
Diels-Alder reactions of graphene: computational predictions of products and sites of reaction.
Cao Y, Osuna S, Liang Y, Haddon RC, Houk KN., J. Am. Chem. Soc. 135(46), 2013
PMID: 24159929
Coaxially stacked coronene columns inside single-walled carbon nanotubes.
Okazaki T, Iizumi Y, Okubo S, Kataura H, Liu Z, Suenaga K, Tahara Y, Yudasaka M, Okada S, Iijima S., Angew. Chem. Int. Ed. Engl. 50(21), 2011
PMID: 21433232
Dimerization-Initiated PreferentialFormation of Coronene-BasedGraphene Nanoribbons in Carbon Nanotubes
AUTHOR UNKNOWN, 2012
Interactions and chemical transformations of coronene inside and outside carbon nanotubes.
Botka B, Fustos ME, Tohati HM, Nemeth K, Klupp G, Szekrenyes Z, Kocsis D, Utczas M, Szekely E, Vaczi T, Tarczay G, Hackl R, Chamberlain TW, Khlobystov AN, Kamaras K., Small 10(7), 2013
PMID: 24167020
″Sulflower″: A New Form of Carbon Sulfide
AUTHOR UNKNOWN, 2006
Advancesin Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package
AUTHOR UNKNOWN, 2015
All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications.
Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A., Adv. Mater. Weinheim 26(28), 2014
PMID: 24862387
Effects of ResidualAberrations Explored on Single-Walled Carbon Nanotubes
AUTHOR UNKNOWN, 2012
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28191929
PubMed | Europe PMC

Suchen in

Google Scholar