RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity

Vendrami D, Telesca L, Weigand H, Weiss M, Fawcett K, Lehman K, Clark MS, Leese F, McMinn C, Moore H, Hoffman J (2017)
ROYAL SOCIETY OPEN SCIENCE 4(2): 160548.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Vendrami, DavidUniBi; Telesca, Luca; Weigand, Hannah; Weiss, Martina; Fawcett, KatieUniBi; Lehman, Katrin; Clark, M. S.; Leese, Florian; McMinn, Carrie; Moore, Heather; Hoffman, JosephUniBi
Abstract / Bemerkung
The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (Pecten maximus) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher F-st values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying population structure and phenotypic plasticity in natural populations.
Stichworte
Pecten maximus; phenotypic plasticity; microsatellite; single; nucleotide; polymorphism; morphometrics; great scallop
Erscheinungsjahr
2017
Zeitschriftentitel
ROYAL SOCIETY OPEN SCIENCE
Band
4
Ausgabe
2
Art.-Nr.
160548
ISSN
2054-5703
Page URI
https://pub.uni-bielefeld.de/record/2910361

Zitieren

Vendrami D, Telesca L, Weigand H, et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. ROYAL SOCIETY OPEN SCIENCE. 2017;4(2): 160548.
Vendrami, D., Telesca, L., Weigand, H., Weiss, M., Fawcett, K., Lehman, K., Clark, M. S., et al. (2017). RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. ROYAL SOCIETY OPEN SCIENCE, 4(2), 160548. doi:10.1098/rsos.160548
Vendrami, D., Telesca, L., Weigand, H., Weiss, M., Fawcett, K., Lehman, K., Clark, M. S., Leese, F., McMinn, C., Moore, H., et al. (2017). RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. ROYAL SOCIETY OPEN SCIENCE 4:160548.
Vendrami, D., et al., 2017. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. ROYAL SOCIETY OPEN SCIENCE, 4(2): 160548.
D. Vendrami, et al., “RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity”, ROYAL SOCIETY OPEN SCIENCE, vol. 4, 2017, : 160548.
Vendrami, D., Telesca, L., Weigand, H., Weiss, M., Fawcett, K., Lehman, K., Clark, M.S., Leese, F., McMinn, C., Moore, H., Hoffman, J.: RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. ROYAL SOCIETY OPEN SCIENCE. 4, : 160548 (2017).
Vendrami, David, Telesca, Luca, Weigand, Hannah, Weiss, Martina, Fawcett, Katie, Lehman, Katrin, Clark, M. S., Leese, Florian, McMinn, Carrie, Moore, Heather, and Hoffman, Joseph. “RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity”. ROYAL SOCIETY OPEN SCIENCE 4.2 (2017): 160548.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Seascape genomics of eastern oyster (Crassostrea virginica) along the Atlantic coast of Canada.
Bernatchez S, Xuereb A, Laporte M, Benestan L, Steeves R, Laflamme M, Bernatchez L, Mallet MA., Evol Appl 12(3), 2019
PMID: 30828376
Detailed insights into pan-European population structure and inbreeding in wild and hatchery Pacific oysters (Crassostrea gigas) revealed by genome-wide SNP data.
Vendrami DLJ, Houston RD, Gharbi K, Telesca L, Gutierrez AP, Gurney-Smith H, Hasegawa N, Boudry P, Hoffman JI., Evol Appl 12(3), 2019
PMID: 30847007
Geographic patterns in morphometric and genetic variation for coyote populations with emphasis on southeastern coyotes.
Hinton JW, Heppenheimer E, West KM, Caudill D, Karlin ML, Kilgo JC, Mayer JJ, Miller KV, Walch M, vonHoldt B, Chamberlain MJ., Ecol Evol 9(6), 2019
PMID: 30962900
RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories.
Vendrami DLJ, De Noia M, Telesca L, Handal W, Charrier G, Boudry P, Eberhart-Phillips L, Hoffman JI., Sci Rep 9(1), 2019
PMID: 31092869
Comparing Pool-seq, Rapture, and GBS genotyping for inferring weak population structure: The American lobster (Homarus americanus) as a case study.
Dorant Y, Benestan L, Rougemont Q, Normandeau E, Boyle B, Rochette R, Bernatchez L., Ecol Evol 9(11), 2019
PMID: 31236247
From conservation genetics to conservation genomics: a genome-wide assessment of blue whales (Balaenoptera musculus) in Australian feeding aggregations.
Attard CRM, Beheregaray LB, Sandoval-Castillo J, Jenner KCS, Gill PC, Jenner MM, Morrice MG, Möller LM., R Soc Open Sci 5(1), 2018
PMID: 29410806
RAD Sequencing and a Hybrid Antarctic Fur Seal Genome Assembly Reveal Rapidly Decaying Linkage Disequilibrium, Global Population Structure and Evidence for Inbreeding.
Humble E, Dasmahapatra KK, Martinez-Barrio A, Gregório I, Forcada J, Polikeit AC, Goldsworthy SD, Goebel ME, Kalinowski J, Wolf JBW, Hoffman JI., G3 (Bethesda) 8(8), 2018
PMID: 29954843
Deciphering the origin of mito-nuclear discordance in two sibling caddisfly species.
Weigand H, Weiss M, Cai H, Li Y, Yu L, Zhang C, Leese F., Mol Ecol 26(20), 2017
PMID: 28792677
Molecular Ecological Basis of Grasshopper (Oedaleus asiaticus) Phenotypic Plasticity under Environmental Selection.
Qin X, Hao K, Ma J, Huang X, Tu X, Ali MP, Pittendrigh BR, Cao G, Wang G, Nong X, Whitman DW, Zhang Z., Front Physiol 8(), 2017
PMID: 29066978

40 References

Daten bereitgestellt von Europe PubMed Central.

Genomics of local adaptation with gene flow.
Tigano A, Friesen VL., Mol. Ecol. 25(10), 2016
PMID: 26946320
RAD sequencing highlights polygenic discrimination of habitat ecotypes in the panmictic American eel.
Pavey SA, Gaudin J, Normandeau E, Dionne M, Castonguay M, Audet C, Bernatchez L., Curr. Biol. 25(12), 2015
PMID: 26028437
Inference of population structure using multilocus genotype data.
Pritchard JK, Stephens M, Donnelly P., Genetics 155(2), 2000
PMID: 10835412
Comparison of single-nucleotide polymorphisms and microsatellites in inference of population structure.
Liu N, Chen L, Wang S, Oh C, Zhao H., BMC Genet. 6 Suppl 1(), 2005
PMID: 16451635
Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX.
May CA, Shone AC, Kalaydjieva L, Sajantila A, Jeffreys AJ., Nat. Genet. 31(3), 2002
PMID: 12089524
Rapid SNP discovery and genetic mapping using sequenced RAD markers.
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA., PLoS ONE 3(10), 2008
PMID: 18852878
Genome-wide genetic marker discovery and genotyping using next-generation sequencing.
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML., Nat. Rev. Genet. 12(7), 2011
PMID: 21681211
Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates.
Fountain ED, Pauli JN, Reid BN, Palsboll PJ, Peery MZ., Mol Ecol Resour 16(4), 2016
PMID: 26946083
Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference.
Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Pinero D, Emerson BC., Mol Ecol Resour 15(1), 2014
PMID: 24916682
The extent of linkage disequilibrium in Arabidopsis thaliana.
Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D., Nat. Genet. 30(2), 2002
PMID: 11780140
Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis.
Coates BS, Sumerford DV, Miller NJ, Kim KS, Sappington TW, Siegfried BD, Lewis LC., J. Hered. 100(5), 2009
PMID: 19525239
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Population genomic footprints of fine-scale differentiation between habitats in Mediterranean blue tits.
Szulkin M, Gagnaire PA, Bierne N, Charmantier A., Mol. Ecol. 25(2), 2016
PMID: 26800038
Inferring weak population structure with the assistance of sample group information.
Hubisz MJ, Falush D, Stephens M, Pritchard JK., Mol Ecol Resour 9(5), 2009
PMID: 21564903
Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda.
Dauphin Y, Denis A., Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 126(3), 2000
PMID: 10964031
Demystifying the RAD fad.
Puritz JB, Matz MV, Toonen RJ, Weber JN, Bolnick DI, Bird CE., Mol. Ecol. 23(24), 2014
PMID: 25319241
Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.
Pespeni MH, Chan F, Menge BA, Palumbi SR., Integr. Comp. Biol. 53(5), 2013
PMID: 23980118
Stacks: building and genotyping Loci de novo from short-read sequences.
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH., G3 (Bethesda) 1(3), 2011
PMID: 22384329
adegenet 1.3-1: new tools for the analysis of genome-wide SNP data.
Jombart T, Ahmed I., Bioinformatics 27(21), 2011
PMID: 21926124
High-throughput sequencing reveals inbreeding depression in a natural population.
Hoffman JI, Simpson F, David P, Rijks JM, Kuiken T, Thorne MA, Lacy RC, Dasmahapatra KK., Proc. Natl. Acad. Sci. U.S.A. 111(10), 2014
PMID: 24586051
Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories.
Bird CE, Holland BS, Bowen BW, Toonen RJ., Mol. Ecol. 16(15), 2007
PMID: 17651195
Variation in size and growth of the great scallop Pecten maximus along a latitudinal gradient.
Chauvaud L, Patry Y, Jolivet A, Cam E, Le Goff C, Strand O, Charrier G, Thebault J, Lazure P, Gotthard K, Clavier J., PLoS ONE 7(5), 2012
PMID: 22649553
Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate.
Hoffman JI, Peck LS, Linse K, Clarke A., J. Hered. 102(1), 2010
PMID: 20720149
Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis.
Mendez-Vigo B, Savic M, Ausin I, Ramiro M, Martin B, Pico FX, Alonso-Blanco C., Plant Cell Environ. 39(2), 2015
PMID: 26173848
Mitochondrial DNA variation in the scallop Pecten maximus (L.) assessed by a PCR-RFLP method.
Wilding CS, Beaumont AR, Latchford JW., Heredity (Edinb) 79 ( Pt 2)(), 1997
PMID: 9279012
Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species.
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE., PLoS ONE 7(5), 2012
PMID: 22675423
The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species.
Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner GF, Rico C., Proc. Natl. Acad. Sci. U.S.A. 106(5), 2009
PMID: 19164518
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28386419
PubMed | Europe PMC

Suchen in

Google Scholar