Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis

Urbanczyk M, Gora J, Latajka R, Sewald N (2017)
Amino Acids 49(2): 209-222.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Urbanczyk, Malgorzata; Gora, JerzyUniBi; Latajka, Rafal; Sewald, NorbertUniBi
Abstract / Bemerkung
Antifreeze glycopeptides (AFGPs) are a class of biological antifreeze agents found predominantly in Arctic and Antarctic species of fish. They possess the ability to regulate ice nucleation and ice crystal growth, thus creating viable life conditions at temperatures below the freezing point of body fluids. AFGPs usually consist of 4-55 repetitions of the tripeptide unit Ala-Ala-Thr that is O-glycosylated at the threonine side chains with beta-D-galactosyl-(1 -> 3)-alpha-N-acetyl-D-galactosamine. Due to their interesting properties and high antifreeze activity, they have many potential applications, e.g., in food industry and medicine. Current research is focused towards understanding the relationship between the structural preferences and the activity of the AFGPs, as well as developing time and cost efficient ways of synthesis of this class of molecules. Recent computational studies in conjunction with experimental results from NMR and THz spectroscopies were a possible breakthrough in understanding the mechanism of action of AFGPs. At the moment, as a result of these findings, the focus of research is shifted towards the analysis of behaviour of the hydration shell around AFGPs and the impact of water-dynamics retardation caused by AFGPs on ice crystal growth. In the field of organic synthesis of AFGP analogues, most of the novel protocols are centered around solid-phase peptide synthesis and multiple efforts are made to optimize this approach. In this review, we present the current state of knowledge regarding the structure and activity of AFGPs, as well as approaches to organic synthesis of these molecules with focus on the most recent developments.
Stichworte
Antifreeze glycopeptides; AFGP; Structure-activity relationship; Solid-phase peptide synthesis; Hydration shell dynamics; Terahertz; spectroscopy
Erscheinungsjahr
2017
Zeitschriftentitel
Amino Acids
Band
49
Ausgabe
2
Seite(n)
209-222
ISSN
0939-4451
eISSN
1438-2199
Page URI
https://pub.uni-bielefeld.de/record/2910353

Zitieren

Urbanczyk M, Gora J, Latajka R, Sewald N. Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis. Amino Acids. 2017;49(2):209-222.
Urbanczyk, M., Gora, J., Latajka, R., & Sewald, N. (2017). Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis. Amino Acids, 49(2), 209-222. doi:10.1007/s00726-016-2368-z
Urbanczyk, Malgorzata, Gora, Jerzy, Latajka, Rafal, and Sewald, Norbert. 2017. “Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis”. Amino Acids 49 (2): 209-222.
Urbanczyk, M., Gora, J., Latajka, R., and Sewald, N. (2017). Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis. Amino Acids 49, 209-222.
Urbanczyk, M., et al., 2017. Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis. Amino Acids, 49(2), p 209-222.
M. Urbanczyk, et al., “Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis”, Amino Acids, vol. 49, 2017, pp. 209-222.
Urbanczyk, M., Gora, J., Latajka, R., Sewald, N.: Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis. Amino Acids. 49, 209-222 (2017).
Urbanczyk, Malgorzata, Gora, Jerzy, Latajka, Rafal, and Sewald, Norbert. “Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis”. Amino Acids 49.2 (2017): 209-222.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP).
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N., Beilstein J Org Chem 15(), 2019
PMID: 31435440
1D Self-Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptide-Functionalized Perylene Bisimides.
Adam MK, Jarrett-Wilkins C, Beards M, Staykov E, MacFarlane LR, Bell TDM, Matthews JM, Manners I, Faul CFJ, Moens PDJ, Ben RN, Wilkinson BL., Chemistry 24(31), 2018
PMID: 29644728
Design and synthesis of galactose-conjugated fluorinated and non-fluorinated proline oligomers: towards antifreeze molecules.
Sumii Y, Hibino H, Saidalimu I, Kawahara H, Shibata N., Chem Commun (Camb) 54(70), 2018
PMID: 30102305
Foldability of a Natural De Novo Evolved Protein.
Bungard D, Copple JS, Yan J, Chhun JJ, Kumirov VK, Foy SG, Masel J, Wysocki VH, Cordes MHJ., Structure 25(11), 2017
PMID: 29033289

83 References

Daten bereitgestellt von Europe PubMed Central.

Synthesis of cyclic antifreeze glycopeptide and glycopeptoids and their ice recrystallization inhibition activity
Ahn M, Murugan RN, Shin SY, Kim E, Lee JH, Kim HJ, Bang JK., 2012
Peptoid-based positional scanning derivatives: revealing the optimum residue required for ice recrystallization inhibition activity for every position in the AFGPs
Ahn M, Murugan RN, Shin SY, Kim HJ, Bang JK., 2012
Antifreeze proteins: structural diversity and mechanism of action
Ananthanarayanan VS., 1989
Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules
Balcerzak AK, Capicciotti CJ, Briard JG, Ben RN., 2014
Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology.
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ., Mar Drugs 11(6), 2013
PMID: 23752356
Synthesis of a C-linked antifreeze glycoprotein (AFGP) mimic: probes for investigating the mechanism of action
Ben RN, Eniade AA, Hauer L., 1999
Aggregation of antifreeze glycoprotein fraction 8 and its effect on antifreeze activity.
Bouvet VR, Lorello GR, Ben RN., Biomacromolecules 7(2), 2006
PMID: 16471931
Direct evidence for antifreeze glycoprotein adsorption onto an ice surface.
Brown RA, Yeh Y, Burcham TS, Feeney RE., Biopolymers 24(7), 1985
PMID: 4027344
Quantitative efficacy classification of ice recrystallization inhibition agents
Budke C, Dreyer A, Jeager J, Gimpel K, Berkmeister T, Bonin AS, Nagel L, Plattner C, DeVries AL, Sewald N, Koop T., 2014
Purification and primary sequences of the major arginine-containing antifreeze glycopeptides from the fish Eleginus gracilis.
Burcham TS, Osuga DT, Rao BN, Bush CA, Feeney RE., J. Biol. Chem. 261(14), 1986
PMID: 3700395
Antifreeze glycoprotein. Conformational model based on vacuum ultraviolet circular dichroism data.
Bush CA, Feeney RE, Osuga DT, Ralapati S, Yeh Y., Int. J. Pept. Protein Res. 17(1), 1981
PMID: 7228488
Synthesis of C-linked triazole-containing AFGP analogues and their ability to inhibit ice recrystallization.
Capicciotti CJ, Trant JF, Leclere M, Ben RN., Bioconjug. Chem. 22(4), 2011
PMID: 21456533
A diminished role for hydrogen bonds in antifreeze protein binding to ice.
Chao H, Houston ME Jr, Hodges RS, Kay CM, Sykes BD, Loewen MC, Davies PL, Sonnichsen FD., Biochemistry 36(48), 1997
PMID: 9398184
Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules.
Corcilius L, Santhakumar G, Stone RS, Capicciotti CJ, Joseph S, Matthews JM, Ben RN, Payne RJ., Bioorg. Med. Chem. 21(12), 2013
PMID: 23523384
The importance of hydration for inhibiting ice recrystallization with C-linked antifreeze glycoproteins.
Czechura P, Tam RY, Dimitrijevic E, Murphy AV, Ben RN., J. Am. Chem. Soc. 130(10), 2008
PMID: 18275198
Antifreeze proteins bind independently to ice.
DeLuca CI, Comley R, Davies PL., Biophys. J. 74(3), 1998
PMID: 9512046
Antifreeze glycoprotein activity correlates with long-range protein-water dynamics.
Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M., J. Am. Chem. Soc. 132(35), 2010
PMID: 20712311
Fully convergent solid phase synthesis of antifreeze glycoprotein analogues.
Eniade A, Ben RN., Biomacromolecules 2(2), 2001
PMID: 11749220
A biological antifreeze.
Feeney RE., Am. Sci. 62(6), 1974
PMID: 4440942
Antifreeze proteins from fish bloods.
Feeney RE, Yeh Y., Adv. Protein Chem. 32(), 1978
PMID: 362870
Investigations of the differential affinity of antifreeze glycoprotein for single crystal ice
Feeney RE, Fink WH, Hallet J, Harrison K, Osuga DT, Vesenka JP, Yeh Y., 1991
Variation in blood serum antifreeze activity of Antarctic Trematomus fishes across habitat temperature and depth.
Fields LG, DeVries AL., Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 185(), 2015
PMID: 25770668
Solid phase synthesis and conformation of sequential glycosylated polytripeptide sequences related to antifreeze glycoproteins.
Filira F, Biondi L, Scolaro B, Foffani MT, Mammi S, Peggion E, Rocchi R., Int. J. Biol. Macromol. 12(1), 1990
PMID: 2083240
Blood glycoprotein from antarctic fish. Possible conformational origin of antifreeze activity.
Franks F, Morris ER., Biochim. Biophys. Acta 540(2), 1978
PMID: 656475
Antifreeze glycoproteins from Polar fish. Structural requirements for function of glycopeptide 8.
Geoghegan KF, Osuga DT, Ahmed AI, Yeh Y, Feeney RE., J. Biol. Chem. 255(2), 1980
PMID: 7356637
Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics.
Gibson MI, Barker CA, Spain SG, Albertin L, Cameron NR., Biomacromolecules 10(2), 2009
PMID: 19072300
NMR characterization of side chain flexibility and backbone structure in the type I antifreeze protein at near freezing temperatures.
Gronwald W, Chao H, Reddy DV, Davies PL, Sykes BD, Sonnichsen FD., Biochemistry 35(51), 1996
PMID: 8988006
One-pot synthesis of cyclic antifreeze glycopeptides.
Hachisu M, Hinou H, Takamichi M, Tsuda S, Koshida S, Nishimura S., Chem. Commun. (Camb.) (13), 2009
PMID: 19294247
Phenomenology and mechanism of antifreeze peptide activity
Hall DG, Lips A., 1999
'Antifreeze' glycoproteins from polar fish.
Harding MM, Anderberg PI, Haymet AD., Eur. J. Biochem. 270(7), 2003
PMID: 12653993
Valine substituted winter flounder 'antifreeze': preservation of ice growth hysteresis.
Haymet AD, Ward LG, Harding MM, Knight CA., FEBS Lett. 430(3), 1998
PMID: 9688560
Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
Heggemann C, Budke C, Schomburg B, Majer Z, Wissbrock M, Koop T, Sewald N., Amino Acids 38(1), 2009
PMID: 19165574
Protein interaction with ice.
Hew CL, Yang DS., Eur. J. Biochem. 203(1-2), 1992
PMID: 1730239
Microwave-assisted solid-phase synthesis of antifreeze glycopeptides.
Izumi R, Matsushita T, Fujitani N, Naruchi K, Shimizu H, Tsuda S, Hinou H, Nishimura S., Chemistry 19(12), 2013
PMID: 23401082
Effects of a polymeric, nonequilibrium ‘antifreeze’ upon ice growth from water
Knight CA, DeVries AL., 1994
Fish antifreeze protein and the freezing and recrystallization of ice.
Knight CA, DeVries AL, Oolman LD., Nature 308(5956), 1984
PMID: 6700733
Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes.
Knight CA, Cheng CC, DeVries AL., Biophys. J. 59(2), 1991
PMID: 2009357
Adsorption to ice of fish antifreeze glycopeptides 7 and 8.
Knight CA, Driggers E, DeVries AL., Biophys. J. 64(1), 1993
PMID: 8431545
Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod.
Lane AN, Hays LM, Feeney RE, Crowe LM, Crowe JH., Protein Sci. 7(7), 1998
PMID: 9684888
Direct observation of postadsorption aggregation of antifreeze glycoproteins on silicates
Lavalle P, DeVries AL, Cheng CC, Scheuring S, Ramsden JJ., 2000
C-linked antifreeze glycoprotein (C-AFGP) analogues as novel cryoprotectants.
Leclere M, Kwok BK, Wu LK, Allan DS, Ben RN., Bioconjug. Chem. 22(9), 2011
PMID: 21815632
Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish.
Lin Y, Duman JG, DeVries AL., Biochem. Biophys. Res. Commun. 46(1), 1972
PMID: 5006918
In vitro studies of antifreeze glycoprotein (AFGP) and a C-linked AFGP analogue.
Liu S, Wang W, Moos Ev, Jackman J, Mealing G, Monette R, Ben RN., Biomacromolecules 8(5), 2007
PMID: 17411090
Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein.
Mallajosyula SS, Vanommeslaeghe K, MacKerell AD Jr., J Phys Chem B 118(40), 2014
PMID: 25137353
Rapid microwave-assisted solid-phase glycopeptide synthesis.
Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S., Org. Lett. 7(5), 2005
PMID: 15727464

AUTHOR UNKNOWN, 0
Synthesis of fish antifreeze neoglycopeptides using microwave-assisted "click chemistry".
Miller N, Williams GM, Brimble MA., Org. Lett. 11(11), 2009
PMID: 19473046
N.m.r. study of interaction between sugar and peptide moieties in mucin-type model glycopeptides.
Mimura Y, Yamamoto Y, Inoue Y, Chujo R., Int. J. Biol. Macromol. 14(5), 1992
PMID: 1419961
Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.
Nagel L, Plattner C, Budke C, Majer Z, DeVries AL, Berkemeier T, Koop T, Sewald N., Amino Acids 41(3), 2011
PMID: 21603949
Antifreeze glycopeptide diastereomers.
Nagel L, Budke C, Dreyer A, Koop T, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209499
Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.
Nagel L, Budke C, Erdmann RS, Dreyer A, Wennemers H, Koop T, Sewald N., Chemistry 18(40), 2012
PMID: 22930587
The dynamics, structure, and conformational free energy of proline-containing antifreeze glycoprotein.
Nguyen DH, Colvin ME, Yeh Y, Feeney RE, Fink WH., Biophys. J. 82(6), 2002
PMID: 12023212
On-resin click-glycoconjugation of peptoids
Norgren AS, Budke C, Majer Z, Heggemann C, Koop T, Sewald N., 2009
Comparison of antifreeze glycopeptides from arctic and antarctic fishes
O’Grady SM, Schrag JD, Raymond JA, DeVries AL., 1982
A simple and quantitative method to evaluate ice recrystallization kinetics using the circle Hough Transform algorithm
Olijve LLC, Oude AS, Voets IK., 2016
Cooperative functioning between antifreeze glycoproteins.
Osuga DT, Ward FC, Yeh Y, Feeney RE., J. Biol. Chem. 253(19), 1978
PMID: 690119
Co-functional activities of two different antifreeze proteins: the antifreeze glycoprotein from polar fish and the nonglycoprotein from a Newfoundland fish
Osuga DT, Feeney RE, Yeh Y, Hew CL., 1980
Efficiency of antifreeze glycoproteins for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm.
Qadeer S, Khan MA, Ansari MS, Rakha BA, Ejaz R, Iqbal R, Younis M, Ullah N, DeVries AL, Akhter S., Anim. Reprod. Sci. 157(), 2015
PMID: 25863987
Adsorption inhibition as a mechanism of freezing resistance in polar fishes.
Raymond JA, DeVries AL., Proc. Natl. Acad. Sci. U.S.A. 74(6), 1977
PMID: 267952
Inhibition of growth of nonbasal planes in ice by fish antifreezes.
Raymond JA, Wilson P, DeVries AL., Proc. Natl. Acad. Sci. U.S.A. 86(3), 1989
PMID: 2915983
Efficient and versatile synthesis of mucin-like glycoprotein mimics
Tachibana Y, Matsubara N, Nakajima F, Tsuda T, Tsuda S, Monde K, Nishimura S., 2002
Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity.
Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S., Angew. Chem. Int. Ed. Engl. 43(7), 2004
PMID: 14767958
Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
Tam RY, Rowley CN, Petrov I, Zhang T, Afagh NA, Woo TK, Ben RN., J. Am. Chem. Soc. 131(43), 2009
PMID: 19824639
Developing highly active small molecule ice recrystallization inhibitors based upon C-linked antifreeze glycoprotein analogues
Trant JF, Biggs RA, Capicciotti CJ, Ben RN., 2013
Facile solid-phase synthesis of an antifreeze glycoprotein.
Tseng PH, Jiaang WT, Chang MY, Chen ST., Chemistry 7(3), 2001
PMID: 11261655

AUTHOR UNKNOWN, 0
Dynamics of antifreeze glycoproteins in the presence of ice.
Tsvetkova NM, Phillips BL, Krishnan VV, Feeney RE, Fink WH, Crowe JH, Risbud SH, Tablin F, Yeh Y., Biophys. J. 82(1 Pt 1), 2002
PMID: 11751333
Synthesis and evaluation of linear CuAAC-oligomerized antifreeze neo-glycopeptides
van S, Capicciotti CJ, Rontogianni S, Ben RN, Liskamp RM., 2014
A model for binding of an antifreeze polypeptide to ice.
Wen D, Laursen RA., Biophys. J. 63(6), 1992
PMID: 1489916
Total synthesis of homogeneous antifreeze glycopeptides and glycoproteins.
Wilkinson BL, Stone RS, Capicciotti CJ, Thaysen-Andersen M, Matthews JM, Packer NH, Ben RN, Payne RJ., Angew. Chem. Int. Ed. Engl. 51(15), 2012
PMID: 22389168
Explaining thermal hysteresis by the Kelvin effect
Wilson PW., 1993
Antifreeze glycopeptides and peptides in Antarctic fish species from the Weddell Sea and the Lazarev Sea
Wöhrmann AP., 1996
Pattern formation of antifreeze glycoproteins via solvent evaporation.
Younes-Metzler O, Ben RN, Giorgi JB., Langmuir 23(23), 2007
PMID: 17927221
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27913993
PubMed | Europe PMC

Suchen in

Google Scholar