Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors

Tzvetkov NT, Stammler H-G, Neumann B, Hristova S, Antonov L, Gastreich M (2017)
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 127: 470-492.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tzvetkov, Nikolay T.; Stammler, Hans-GeorgUniBi; Neumann, BeateUniBi; Hristova, Silvia; Antonov, Liudmil; Gastreich, Marcus
Abstract / Bemerkung
The pharmacological and physicochemical analysis of structurally optimized N-alkyl-substituted indazole-5-carboxamides, developed as potential drug and radioligand candidates for the treatment and diagnosis of Parkinson's disease (PD) and other neurological disorders, is reported. Recent efforts have been focused on the development of subnanomolar potent, selective MAO-B (N1-alkyl-substituted compounds 12a-14a and 15) and dual active MAO-A/B (N2-methylated compounds 12b-14b) inhibitors with nanomolar potency towards MAO-B and moderately active against MAO-A enzyme, respectively. The most promising drug-like derivatives in both series were N-(3-chloro-4-fluoropheny1)-1-methy1-1Hindazole-5-carboxamide (13a, NTZ-1441, IC50 hMAO-B 0.662 nM, >15000-fold selective versus MAO-A) and N-(3-chloro-4-fluorophenyl)-2-methyl-2H-indazole-5-carboxamide (13b, NTZ-1442, IC50 hMAO-B 8.08 nM, IC50 hMAO-A 0.56 mu M, SI = 70). Moreover, compounds 13a and 13b were predicted to cross both the gastrointestinal tract (at pH 2.0, 5.5, and 7,4) and the blood-brain barrier (BBB) in vitro with appropriate drug-like properties required for CNS active drugs. Combined single X-ray/molecular modeling studies provided insights into the enzyme inhibitor interactions within both MAO isoforms and the rationale for their inhibitory activity with controlled MAO-A/B selectivity despite their small structural differences. The binding modes of 12a,b and 13a,b confirmed that the major interactions with hMAO-B were established via the flexible carbonyl group of the carboxamide linkage and the electron donating nitrogens N1 or N2 of the indazole moiety, allowing further exploration of the alkyl side chain for next step lead optimization efforts. (C) 2017 Elsevier Masson SAS. All rights reserved.
Stichworte
ADME; MAO inhibitors; Molecular modeling; Indazole-5-carboxamides; Parkinson's disease; X-ray
Erscheinungsjahr
2017
Zeitschriftentitel
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Band
127
Seite(n)
470-492
ISSN
0223-5234
eISSN
1768-3254
Page URI
https://pub.uni-bielefeld.de/record/2910347

Zitieren

Tzvetkov NT, Stammler H-G, Neumann B, Hristova S, Antonov L, Gastreich M. Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. 2017;127:470-492.
Tzvetkov, N. T., Stammler, H. - G., Neumann, B., Hristova, S., Antonov, L., & Gastreich, M. (2017). Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 127, 470-492. doi:10.1016/j.ejmech.2017.01.011
Tzvetkov, Nikolay T., Stammler, Hans-Georg, Neumann, Beate, Hristova, Silvia, Antonov, Liudmil, and Gastreich, Marcus. 2017. “Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors”. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 127: 470-492.
Tzvetkov, N. T., Stammler, H. - G., Neumann, B., Hristova, S., Antonov, L., and Gastreich, M. (2017). Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 127, 470-492.
Tzvetkov, N.T., et al., 2017. Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 127, p 470-492.
N.T. Tzvetkov, et al., “Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors”, EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 127, 2017, pp. 470-492.
Tzvetkov, N.T., Stammler, H.-G., Neumann, B., Hristova, S., Antonov, L., Gastreich, M.: Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. 127, 470-492 (2017).
Tzvetkov, Nikolay T., Stammler, Hans-Georg, Neumann, Beate, Hristova, Silvia, Antonov, Liudmil, and Gastreich, Marcus. “Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors”. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 127 (2017): 470-492.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biological Activity and In Silico Study of 3-Modified Derivatives of Betulin and Betulinic Aldehyde.
Bębenek E, Chrobak E, Marciniec K, Kadela-Tomanek M, Trynda J, Wietrzyk J, Boryczka S., Int J Mol Sci 20(6), 2019
PMID: 30893801
Monoamine Oxidases (MAOs) as Privileged Molecular Targets in Neuroscience: Research Literature Analysis.
Yeung AWK, Georgieva MG, Atanasov AG, Tzvetkov NT., Front Mol Neurosci 12(), 2019
PMID: 31191248
Kinetics, mechanism, and inhibition of monoamine oxidase.
Ramsay RR, Albreht A., J Neural Transm (Vienna) 125(11), 2018
PMID: 29516165
Natural product-based multitargeted ligands for Alzheimer's disease treatment?
Tzvetkov NT, Atanasov AG., Future Med Chem 10(15), 2018
PMID: 30043630

74 References

Daten bereitgestellt von Europe PubMed Central.

Management of Parkinson׳s disease: Current and future pharmacotherapy.
Kakkar AK, Dahiya N., Eur. J. Pharmacol. 750(), 2015
PMID: 25637088
Parkinson's disease.
Samii A, Nutt JG, Ransom BR., Lancet 363(9423), 2004
PMID: 15172778
Managing the patient with newly diagnosed Parkinson's disease
Singer, Clev. Clin. J. Med. 79(Suppl. 2), 2012
Exercise: is it a neuroprotective and if so, how does it work?
Zigmond, Parkinsonism Rel. Disord. 20(Suppl. 1), 2014
Parkinson's disease: mechanisms and models.
Dauer W, Przedborski S., Neuron 39(6), 2003
PMID: 12971891
The neurobiology of dopamine signaling.
Girault JA, Greengard P., Arch. Neurol. 61(5), 2004
PMID: 15148138
Japanese Istradefylline Study Group, A long-term study of istradefylline safety and efficacy in patients with Parkinson's disease
Kondo, Clin. Neuropharmcol 38(), 2015
Clinical utility of neuroprotective agents in neurodegenerative disease: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis
Dunkel, Exp. Opin. Investig. Drugs 21(), 2012
Therapies in Parkinson's disease.
Jankovic J, Poewe W., Curr. Opin. Neurol. 25(4), 2012
PMID: 22691758
Role of monoamine oxidase genetics in the etiology of Parkinson's disease
Kurth, 1994
Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements.
Whibley A, Urquhart J, Dore J, Willatt L, Parkin G, Gaunt L, Black G, Donnai D, Raymond FL., Eur. J. Hum. Genet. 18(10), 2010
PMID: 20485326
Distribution of monoamine oxidase proteins in human brain: implication for brain imaging studies
Tong, J. Cereb. Blood Flow. Metab. 33(), 2013
Monoamine oxidase: from genes to behavior
Shih, Ann. Rev. Neurosci. 22(), 1999
Monoamine oxidase expression during development and aging.
Nicotra A, Pierucci F, Parvez H, Senatori O., Neurotoxicology 25(1-2), 2004
PMID: 14697890
Early and persistent alterations in prefrontal cortex MAO A and B in Alzheimer's disease
Kennedy, J. Neural Transm. 110(), 2003
Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer's disease patients.
Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE., Neurosci. Lett. 326(1), 2002
PMID: 12052537
Clinical applications of MAO-inhibitors.
Riederer P, Lachenmayer L, Laux G., Curr. Med. Chem. 11(15), 2004
PMID: 15279566
Evidence that formulations of the selective MAO-B inhibitor, selegiline, which bypass first-pass metabolism, also inhibit MAO-A in the human brain.
Fowler JS, Logan J, Volkow ND, Shumay E, McCall-Perez F, Jayne M, Wang GJ, Alexoff DL, Apelskog-Torres K, Hubbard B, Carter P, King P, Fahn S, Gilmor M, Telang F, Shea C, Xu Y, Muench L., Neuropsychopharmacology 40(3), 2014
PMID: 25249059
From a Parkinson's disease expert: rasagiline and the future of therapy
Lakhan, Mol. Neurodegener. 2(), 2007
Recent developments on the structure-activity relationship studies of MAO inhibitors and their role in different neurological disorders
Kumar, RSC Adv. 6(), 2016
Safinamide: first global approval.
Deeks ED., Drugs 75(6), 2015
PMID: 25851099
Long-term effects of safinamide on dyskinesia in mid-to late-stage Parkinson's disease: a post-hoc analysis
Cattaneo, J. Parkinson’s Dis. 5(), 2015
Clinical pharmacology review of safinamide for the treatment of Parkinson's disease.
Fabbri M, Rosa MM, Abreu D, Ferreira JJ., Neurodegener Dis Manag 5(6), 2015
PMID: 26587996
New frontiers in selective human MAO-B inhibitors
Carradori, J. Med. Chem. 58(), 2015
Multifunctional enzyme inhibition for neuroprotection – a focus on MAO, NOS, and AChE inhibitors
Joubert, 2015
Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson's disease
Youdim, Park. Relat. Disord. 20S1(), 2014
Indazole- and indole-5-carboxamides: selective and reversible monoamine oxidase B inhibitors with subnanomolar potency
Tzvetkov, J. Med. Chem. 57(), 2014

Tzvetkov, 2014

AUTHOR UNKNOWN, 0
Inhibition of monoamine oxidase by indole and benzofuran derivatives.
Prins LH, Petzer JP, Malan SF., Eur J Med Chem 45(10), 2010
PMID: 20674099
A simple approach to multifunctionalized N1-alkylated 7-amino-6-azaoxindole derivatives using there in situ stabilized tautomer form
Tzvetkov, Tetrahedron 72(), 2016
A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates.
Holt A, Sharman DF, Baker GB, Palcic MM., Anal. Biochem. 244(2), 1997
PMID: 9025956
A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative
Mohanty, J. Immunol. Methods 202(), 1997
Potent and selective MAO-B inhibitory activity: amino- versus nitro-3-arylcoumarin derivatives.
Matos MJ, Rodriguez-Enriquez F, Vilar S, Santana L, Uriarte E, Hripcsak G, Estrada M, Rodriguez-Franco MI, Vina D., Bioorg. Med. Chem. Lett. 25(3), 2014
PMID: 25532905
A crystal structure of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class
Binda, J. Med. Chem. 47(), 2004
Binding and interactions of a novel potent indole-5-carboxamide MAO-B inhibitor
Tzvetkov, Compt. Rend. Acad. Bulg. Sci. 67(), 2014
Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors.
Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T., Proc. Natl. Acad. Sci. U.S.A. 105(15), 2008
PMID: 18391214
Structures of monoamine oxidase B complexes with selective non-covalent inhibitors: safinamide and coumarin analogs
Binda, J. Med. Chem. 50(), 2007

LeadIT, 2016

SeeSAR, 2016
A consistent description of HYdrogen bond and DEhydratation energies in protein-ligand complexes: methods behind the HYDE scoring function
Schneider, J. Comput.-Aided Mol. Des. 27(), 2013

AUTHOR UNKNOWN, 0
Structural Determinants of the Selectivity of 3-Benzyluracil-1-acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10.
Ruiz FX, Cousido-Siah A, Porte S, Dominguez M, Crespo I, Rechlin C, Mitschler A, de Lera AR, Martin MJ, de la Fuente JA, Klebe G, Pares X, Farres J, Podjarny A., ChemMedChem 10(12), 2015
PMID: 26549844
Applying thermodynamic profiling in lead finding and optimization.
Klebe G., Nat Rev Drug Discov 14(2), 2015
PMID: 25614222
Impact of surface water layers on protein–ligand binding: how well are experimental data reproduced by molecular dynamics simulations in a thermilysin test case
Betz, J. Chem. Inf. Model 56(), 2016
Discovery of new chemical entities for old targets: insights on the lead optimization of chromone-based monoamine oxidase B (MAO-B) inhibitors
Reis, J. Med. Chem. 59(), 2016
Prediction of the color of dyes by using time-dependent density functional theory
Kawauchi, Bulg. Chem. Comm. 46(), 2014
Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. I. Prediction of intestinal absorption
Clark, J. Pharm. Sci. 88(), 1999
Prediction of passive blood-brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors
Vilar, J. Mol. Graph. Model 28(), 2010
Lipophilic efficiency: the most important efficiency metric in medicinal chemistry
Freeman-Cook, Future Sci. 5(), 2013
Ligand efficiency indices for effective drug discovery, Expert Opin
Abad-Zapatero, Durg Discov. 2(), 2007
Structure-brain exposure relationships
Hitchcock, J. Med. Chem. 49(), 2006
Using the Golden Triangle to optimize clearance and oral absorption.
Johnson TW, Dress KR, Edwards M., Bioorg. Med. Chem. Lett. 19(19), 2009
PMID: 19720530
High throughput solubility measurement in drug discovery and development.
Alsenz J, Kansy M., Adv. Drug Deliv. Rev. 59(7), 2007
PMID: 17604872
High throughput artificial membrane permeability assay for blood-brain barrier.
Di L, Kerns EH, Fan K, McConnell OJ, Carter GT., Eur J Med Chem 38(3), 2003
PMID: 12667689
Permeability – PAMPA
Avdeef, 2012
Skin-PAMPA: a new method for fast prediction of skin penetration.
Sinko B, Garrigues TM, Balogh GT, Nagy ZK, Tsinman O, Avdeef A, Takacs-Novak K., Eur J Pharm Sci 45(5), 2012
PMID: 22326705
A short history of SHELX
Sheldrick, Acta Crystallogr. A64(), 2008
OLEX2: a complete structure solution, refinement and analysis program
Dolomanov, J. Appl. Crystallogr. 42(), 2009
WinGX and ORTEP for windows: an update
Farrugia, J. Appl. Crystallogr. 45(), 2012
A fast flexible docking method using an incremental construction algorithm
Rarey, J. Mol. Biol. 261(), 1996
FlexS: a method for fast flexible ligand superposition
Lemmen, J. Med. Chem. 41(), 1998
Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function
Schneider, J. Comput.-Aided Mol. Des. 26(), 2012
Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes
Bietz, J. Cheminform 6(), 2014

AUTHOR UNKNOWN, 0
Torsion angle preferences in drug-like chemical space: a comprehensive guide
Schärfer, J. Med. Chem. 56(), 2013
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28107736
PubMed | Europe PMC

Suchen in

Google Scholar