Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou

Chen X-C, Jahn HJ, Engling G, Ward TJ, Krämer A, Ho K-F, Chan C-Y (2017)
SCIENCE OF THE TOTAL ENVIRONMENT 580: 347-357.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chen, Xiao-Cui; Jahn, Heiko J.UniBi; Engling, Guenter; Ward, Tony J.; Krämer, AlexanderUniBi ; Ho, Kin-Fai; Chan, Chuen-Yu
Abstract / Bemerkung
Total personal exposures can differ from the concentrations measured at stationary ambient monitoring sites. To provide further insight into factors affecting exposure to particles, chemical tracers were used to separate total personal exposure into its ambient and non-ambient components. Simultaneous measurements of ambient and personal exposure to fine particles (PM2.5) were conducted in eight districts of Guangzhou, a megacity in South China, during the winter of 2011. Considerable significant correlations (Spearman's Rho, r(s)) between personal exposures and ambient concentrations of sulfate (SO42-; r(s)> 0.68) were found in contrast to elemental carbon (EC; r(s) > 037). The average fraction of personal SW to ambient SO42- resulting in an adjusted ambient exposure factor of cc = 0.72 and a slope of 0.73 was determined from linear regression analysis when there were minimal indoor sources of SO42-. From all data pooled across the districts, the estimated average ambient -generated and non-ambient -generated exposure to PM2.5 were 55.3 mu g/m(3) (SD = 23.4 mu g/m(3)) and 18.1 mu g/m(3) (SD = 29.1 mu g/m(3)), respectively. A significant association was found between ambient -generated exposure and ambient PM2.5 concentrations (Pearson's r = 0.51, p < 0.001). As expected, the non-ambient generated exposure was not related to the ambient concentrations. This study highlights the importance of both ambient and non-ambient components of total personal exposure in the megacity of Guangzhou. Our results support the use of SO42- as a tracer of personal exposure to PM2.5 of ambient origin in environmental and epidemiological studies. (C) 2016 Elsevier B.V. All rights reserved.
Stichworte
Environmental monitoring; Personal exposure; Fine aerosol particles; (PM2.5); SO42-; EC
Erscheinungsjahr
2017
Zeitschriftentitel
SCIENCE OF THE TOTAL ENVIRONMENT
Band
580
Seite(n)
347-357
ISSN
0048-9697
eISSN
1879-1026
Page URI
https://pub.uni-bielefeld.de/record/2910345

Zitieren

Chen X-C, Jahn HJ, Engling G, et al. Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou. SCIENCE OF THE TOTAL ENVIRONMENT. 2017;580:347-357.
Chen, X. - C., Jahn, H. J., Engling, G., Ward, T. J., Krämer, A., Ho, K. - F., & Chan, C. - Y. (2017). Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou. SCIENCE OF THE TOTAL ENVIRONMENT, 580, 347-357. doi:10.1016/j.scitotenv.2016.10.241
Chen, Xiao-Cui, Jahn, Heiko J., Engling, Guenter, Ward, Tony J., Krämer, Alexander, Ho, Kin-Fai, and Chan, Chuen-Yu. 2017. “Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou”. SCIENCE OF THE TOTAL ENVIRONMENT 580: 347-357.
Chen, X. - C., Jahn, H. J., Engling, G., Ward, T. J., Krämer, A., Ho, K. - F., and Chan, C. - Y. (2017). Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou. SCIENCE OF THE TOTAL ENVIRONMENT 580, 347-357.
Chen, X.-C., et al., 2017. Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou. SCIENCE OF THE TOTAL ENVIRONMENT, 580, p 347-357.
X.-C. Chen, et al., “Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou”, SCIENCE OF THE TOTAL ENVIRONMENT, vol. 580, 2017, pp. 347-357.
Chen, X.-C., Jahn, H.J., Engling, G., Ward, T.J., Krämer, A., Ho, K.-F., Chan, C.-Y.: Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou. SCIENCE OF THE TOTAL ENVIRONMENT. 580, 347-357 (2017).
Chen, Xiao-Cui, Jahn, Heiko J., Engling, Guenter, Ward, Tony J., Krämer, Alexander, Ho, Kin-Fai, and Chan, Chuen-Yu. “Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou”. SCIENCE OF THE TOTAL ENVIRONMENT 580 (2017): 347-357.

61 References

Daten bereitgestellt von Europe PubMed Central.

Spatial and temporal variability in outdoor, indoor, and personal PM2.5 exposure
Adgate, Atmos. Environ. 36(), 2002
Longitudinal variability in outdoor, indoor, and personal PM2.5 exposure in healthy non-smoking adults
Adgate, Atmos. Environ. 37(), 2003
Estimated hourly personal exposures to ambient and nonambient particulate matter among sensitive populations in Seattle, Washington.
Allen R, Wallace L, Larson T, Sheppard L, Liu LJ., J Air Waste Manag Assoc 54(9), 2004
PMID: 15468672
Estimating error in using ambient PM2.5 concentrations as proxies for personal exposures: a review.
Avery CL, Mills KT, Williams R, McGraw KA, Poole C, Smith RL, Whitsel EA., Epidemiology 21(2), 2010
PMID: 20087191
Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust
Birch, Aerosol Sci. Technol. 25(), 1996
Apheis: Health impact assessment of long-term exposure to PM(2.5) in 23 European cities.
Boldo E, Medina S, LeTertre A, Hurley F, Mucke HG, Ballester F, Aguilera I, Eilstein D; Apheis Group., Eur. J. Epidemiol. 21(6), 2006
PMID: 16826453
Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association.
Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism., Circulation 121(21), 2010
PMID: 20458016
Children exposure assessment to ultrafine particles and black carbon: the role of transport and cooking activities
Buonanno, Atmos. Environ. 79(), 2013
A population exposure model for particulate matter: case study results for PM(2.5) in Philadelphia, PA.
Burke JM, Zufall MJ, Ozkaynak H., J Expo Anal Environ Epidemiol 11(6), 2001
PMID: 11791164
Indoor/outdoor relationships for organic and elemental carbon in PM2.5 at residential homes in Guangzhou, China
Cao, Aerosol Air Qual. Res. 12(), 2012
Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city.
Cao J, Xu H, Xu Q, Chen B, Kan H., Environ. Health Perspect. 120(3), 2012
PMID: 22389181
Association of particulate air pollution with daily mortality: the China Air Pollution and Health Effects Study.
Chen R, Kan H, Chen B, Huang W, Bai Z, Song G, Pan G; CAPES Collaborative Group., Am. J. Epidemiol. 175(11), 2012
PMID: 22510278
Characterization of fine particulate black carbon in Guangzhou, a megacity of South China
Chen, Atmospheric Pollution Research 5(), 2014
Particle Total Exposure Assessment Methodology (PTEAM) study: distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a southern California community.
Clayton CA, Perritt RL, Pellizzari ED, Thomas KW, Whitmore RW, Wallace LA, Ozkaynak H, Spengler JD., J Expo Anal Environ Epidemiol 3(2), 1993
PMID: 7694700
Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities.
Franklin M, Zeka A, Schwartz J., J Expo Sci Environ Epidemiol 17(3), 2006
PMID: 17006435
Spatial and temporal variability of PM 10 sources in Augsburg, Germany
Gu, Atmos. Environ. 71(), 2013
Receptor modeling of ambient and personal exposure samples: 1998 Baltimore Particulate Matter Epidemiology-Exposure Study
Hopke, Atmos. Environ. 37(), 2003
Seasonal variation of chemical species associated with short-term mortality effects of PM(2.5) in Xi'an, a Central City in China.
Huang W, Cao J, Tao Y, Dai L, Lu SE, Hou B, Wang Z, Zhu T., Am. J. Epidemiol. 175(6), 2012
PMID: 22323403
Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one year monitoring study
Huang, Aerosol Air Qual. Res. 14(), 2013

IHME, 2013
Ambient and personal PM2.5 exposure assessment in the Chinese megacity of Guangzhou
Jahn, Atmos. Environ. 74(), 2013
Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5.
Janssen NA, Hoek G, Simic-Lawson M, Fischer P, van Bree L, ten Brink H, Keuken M, Atkinson RW, Anderson HR, Brunekreef B, Cassee FR., Environ. Health Perspect. 119(12), 2011
PMID: 21810552

Janssen, 2012
Activity patterns of Californians: use of and proximity to indoor pollutant sources
Jenkins, Atmos. Environ. Part A 26(), 1992

Ji, 2015
Exposure to fine particles (PM2.5 and PM1) and black smoke in the general population: personal, indoor, and outdoor levels.
Johannesson S, Gustafson P, Molnar P, Barregard L, Sallsten G., J Expo Sci Environ Epidemiol 17(7), 2007
PMID: 17440486
Variability of environmental exposure to fine particles, black smoke, and trace elements among a Swedish population.
Johannesson S, Rappaport SM, Sallsten G., J Expo Sci Environ Epidemiol 21(5), 2011
PMID: 21448239
Exposure measurement error in PM2.5 health effects studies: a pooled analysis of eight personal exposure validation studies.
Kioumourtzoglou MA, Spiegelman D, Szpiro AA, Sheppard L, Kaufman JD, Yanosky JD, Williams R, Laden F, Hong B, Suh H., Environ Health 13(1), 2014
PMID: 24410940
The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants.
Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH., J Expo Anal Environ Epidemiol 11(3), 2001
PMID: 11477521
Urban measurements of outdoor-indoor PM2.5 concentrations and personal exposure in the deep south. Part I. Pilot study of mass concentrations for nonsmoking subjects
Lachenmyer, Aerosol Sci. Technol. 32(), 2000
Characterization of PM 2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China
Lai, Atmos. Res. 167(), 2016
Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization.
Larson T, Gould T, Simpson C, Liu LJ, Claiborn C, Lewtas J., J Air Waste Manag Assoc 54(9), 2004
PMID: 15468670
Fine particulate air pollution and daily mortality in Shenyang, China.
Ma Y, Chen R, Pan G, Xu X, Song W, Chen B, Kan H., Sci. Total Environ. 409(13), 2011
PMID: 21481436
Winter measurements of children's personal exposure and ambient fine particle mass, sulphate and light absorbing components in a northern community
Noullett, Atmos. Environ. 40(), 2006
Estimation and characterization of children's ambient generated exposure to PM2.5 using sulphate and elemental carbon as tracers
Noullett, Atmos. Environ. 44(), 2010

Ott, 2006
Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California.
Ozkaynak H, Xue J, Spengler J, Wallace L, Pellizzari E, Jenkins P., J Expo Anal Environ Epidemiol 6(1), 1996
PMID: 8777374
Health effects of particulate air pollution: A review of epidemiological evidence.
Ruckerl R, Schneider A, Breitner S, Cyrys J, Peters A., Inhal Toxicol 23(10), 2011
PMID: 21864219
Using sulfur as a tracer of outdoor fine particulate matter.
Sarnat JA, Long CM, Koutrakis P, Coull BA, Schwartz J, Suh HH., Environ. Sci. Technol. 36(24), 2002
PMID: 12521154
The relationship between averaged sulfate exposures and concentrations: results from exposure assessment panel studies in four U.S. cities.
Sarnat JA, Brown KW, Bartell SM, Sarnat SE, Wheeler AJ, Suh HH, Koutrakis P., Environ. Sci. Technol. 43(13), 2009
PMID: 19673302
Cardiovascular effects of fine and ultrafine particles.
Schulz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, Radykewicz R, Stampfl A, Thorand B, Peters A., J Aerosol Med 18(1), 2005
PMID: 15741770
Estimating effects of ambient PM(2.5) exposure on health using PM(2.5) component measurements and regression calibration.
Strand M, Vedal S, Rodes C, Dutton SJ, Gelfand EW, Rabinovitch N., J Expo Sci Environ Epidemiol 16(1), 2006
PMID: 16007115

WHO, 2014
The 1998 Baltimore Particulate Matter Epidemiology-Exposure Study: part 2. Personal exposure assessment associated with an elderly study population.
Williams R, Suggs J, Creason J, Rodes C, Lawless P, Kwok R, Zweidinger R, Sheldon L., J Expo Anal Environ Epidemiol 10(6 Pt 1), 2000
PMID: 11140437
The Research Triangle Park particulate matter panel study: modeling ambient source contribution to personal and residential PM mass concentrations
Williams, Atmos. Environ. 37(), 2003
Residential indoor and personal PM10 exposures of ambient origin based on chemical components.
Xu J, Bai Z, You Y, Zhou J, Zhang J, Niu C, Liu Y, Zhang N, He F, Ding X., J Expo Sci Environ Epidemiol 24(4), 2014
PMID: 24802553
Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China
Zhang, Atmos. Environ. 44(), 2010
Particle exposure assessment for community elderly (PEACE) in Tianjin, China: mass concentration relationships
Zhou, Atmos. Environ. 49(), 2012
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27955968
PubMed | Europe PMC

Suchen in

Google Scholar