Hydrodynamic stimuli and the fish lateral line.

Bleckmann H, Engelmann J, Hanke W, Mogdans J (2002)
Nature 408(6808): 51-52.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bleckmann, H.; Engelmann, J.; Hanke, W.; Mogdans, J.
Erscheinungsjahr
2002
Zeitschriftentitel
Nature
Band
408
Ausgabe
6808
Seite(n)
51-52
ISSN
0028-0836
Page URI
https://pub.uni-bielefeld.de/record/2909112

Zitieren

Bleckmann H, Engelmann J, Hanke W, Mogdans J. Hydrodynamic stimuli and the fish lateral line. Nature. 2002;408(6808):51-52.
Bleckmann, H., Engelmann, J., Hanke, W., & Mogdans, J. (2002). Hydrodynamic stimuli and the fish lateral line. Nature, 408(6808), 51-52. doi:10.1038/35040706
Bleckmann, H., Engelmann, J., Hanke, W., and Mogdans, J. (2002). Hydrodynamic stimuli and the fish lateral line. Nature 408, 51-52.
Bleckmann, H., et al., 2002. Hydrodynamic stimuli and the fish lateral line. Nature, 408(6808), p 51-52.
H. Bleckmann, et al., “Hydrodynamic stimuli and the fish lateral line.”, Nature, vol. 408, 2002, pp. 51-52.
Bleckmann, H., Engelmann, J., Hanke, W., Mogdans, J.: Hydrodynamic stimuli and the fish lateral line. Nature. 408, 51-52 (2002).
Bleckmann, H., Engelmann, J., Hanke, W., and Mogdans, J. “Hydrodynamic stimuli and the fish lateral line.”. Nature 408.6808 (2002): 51-52.

66 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genomic non-redundancy of the mir-183/96/182 cluster and its requirement for hair cell maintenance.
Fogerty J, Stepanyan R, Cianciolo LT, Tooke BP, Perkins BD., Sci Rep 9(1), 2019
PMID: 31311951
Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets.
Winkelnkemper J, Kranz S, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 204(2), 2018
PMID: 29075852
Classifying vortex wakes using neural networks.
Colvert B, Alsalman M, Kanso E., Bioinspir Biomim 13(2), 2018
PMID: 29334075
Hair cell identity establishes labeled lines of directional mechanosensation.
Lozano-Ortega M, Valera G, Xiao Y, Faucherre A, López-Schier H., PLoS Biol 16(7), 2018
PMID: 30024872
Behavior, Electrophysiology, and Robotics Experiments to Study Lateral Line Sensing in Fishes.
Haehnel-Taguchi M, Akanyeti O, Liao JC., Integr Comp Biol 58(5), 2018
PMID: 29982706
Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance.
Bezares-Calderón LA, Berger J, Jasek S, Verasztó C, Mendes S, Gühmann M, Almeda R, Shahidi R, Jékely G., Elife 7(), 2018
PMID: 30547885
Sensory trait variation contributes to biased dispersal of threespine stickleback in flowing water.
Jiang Y, Peichel CL, Torrance L, Rizvi Z, Thompson S, Palivela VV, Pham H, Ling F, Bolnick DI., J Evol Biol 30(4), 2017
PMID: 28029723
Morphology and hydro-sensory role of superficial neuromasts in schooling behaviour of yellow-eyed mullet (Aldrichetta forsteri).
Middlemiss KL, Cook DG, Jerrett AR, Davison W., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(10), 2017
PMID: 28600601
The effects of stimulus parameters on auditory evoked potentials of Carassius auratus.
Garabon JR, Higgs DM., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(11), 2017
PMID: 28836038
A molecular basis for water motion detection by the mechanosensory lateral line of zebrafish.
Chou SW, Chen Z, Zhu S, Davis RW, Hu J, Liu L, Fernando CA, Kindig K, Brown WC, Stepanyan R, McDermott BM., Nat Commun 8(1), 2017
PMID: 29269857
Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing.
Kottapalli AG, Bora M, Asadnia M, Miao J, Venkatraman SS, Triantafyllou M., Sci Rep 6(), 2016
PMID: 26763299
Fish optimize sensing and respiration during undulatory swimming.
Akanyeti O, Thornycroft PJ, Lauder GV, Yanagitsuru YR, Peterson AN, Liao JC., Nat Commun 7(), 2016
PMID: 27009352
Function of lateral line canal morphology.
Klein A, Bleckmann H., Integr Zool 10(1), 2015
PMID: 24920149
Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish.
Ristroph L, Liao JC, Zhang J., Phys Rev Lett 114(1), 2015
PMID: 25615505
Positive taxis and sustained responsiveness to water motions in larval zebrafish.
Groneberg AH, Herget U, Ryu S, De Marco RJ., Front Neural Circuits 9(), 2015
PMID: 25798089
Unscreened water-diversion pipes pose an entrainment risk to the threatened green sturgeon, Acipenser medirostris.
Mussen TD, Cocherell D, Poletto JB, Reardon JS, Hockett Z, Ercan A, Bandeh H, Kavvas ML, Cech JJ, Fangue NA., PLoS One 9(1), 2014
PMID: 24454967
An assay for lateral line regeneration in adult zebrafish.
Pisano GC, Mason SM, Dhliwayo N, Intine RV, Sarras MP., J Vis Exp (86), 2014
PMID: 24747778
Control of self-motion in dynamic fluids: fish do it differently from bees.
Scholtyssek C, Dacke M, Kröger R, Baird E., Biol Lett 10(5), 2014
PMID: 24872463
Developmental and architectural principles of the lateral-line neural map.
Pujol-Martí J, López-Schier H., Front Neural Circuits 7(), 2013
PMID: 23532704
The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae).
Klein A, Münz H, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(9), 2013
PMID: 23824224
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J Neurophysiol 107(10), 2012
PMID: 22378175
By the teeth of their skin, cavefish find their way.
Haspel G, Schwartz A, Streets A, Camacho DE, Soares D., Curr Biol 22(16), 2012
PMID: 22917507
Organization of the gymnotiform fish pallium in relation to learning and memory: II. Extrinsic connections.
Giassi AC, Duarte TT, Ellis W, Maler L., J Comp Neurol 520(15), 2012
PMID: 22430442
Two-dimensional receptive fields of midbrain lateral line units in the goldfish, Carassius auratus.
Voges K, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(8), 2011
PMID: 21505876
Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation.
Salze G, Craig SR, Smith BH, Smith EP, McLean E., J Fish Biol 78(5), 2011
PMID: 21539554
Intraspecific divergence in the lateral line system in the nine-spined stickleback (Pungitius pungitius).
Trokovic N, Herczeg G, McCairns RJ, Ab Ghani NI, Merilä J., J Evol Biol 24(7), 2011
PMID: 21545426
A hydrodynamic sensory antenna used by killifish for nocturnal hunting.
Schwarz JS, Reichenbach T, Hudspeth AJ., J Exp Biol 214(pt 11), 2011
PMID: 21562172
Responses of the goldfish head lateral line to moving objects.
Mogdans J, Geisen S., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(2), 2009
PMID: 19034462
Electronic and electrochemical properties of Li-doped carbon nanotube-zeolite complex.
Wen YW, Liu HJ, Miao L, Pan L, Shi J., Phys Chem Chem Phys 11(4), 2009
PMID: 19835083
Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation.
Faucherre A, Pujol-Martí J, Kawakami K, López-Schier H., PLoS One 4(2), 2009
PMID: 19223970
Behavior and physiology of mechanoreception: separating signal and noise.
Montgomery JC, Windsor S, Bassett D., Integr Zool 4(1), 2009
PMID: 21392272
Lateral line system of fish.
Bleckmann H, Zelick R., Integr Zool 4(1), 2009
PMID: 21392273
Peripheral and central processing of lateral line information.
Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(2), 2008
PMID: 18228078
Distinct migratory and non-migratory ecotypes of an endemic New Zealand eleotrid (Gobiomorphus cotidianus) - implications for incipient speciation in island freshwater fish species.
Michel C, Hicks BJ, Stölting KN, Clarke AC, Stevens MI, Tana R, Meyer A, van den Heuvel MR., BMC Evol Biol 8(), 2008
PMID: 18275608
Lateral line nerve fibers do not code bulk water flow direction in turbulent flow.
Chagnaud BP, Bleckmann H, Hofmann MH., Zoology (Jena) 111(3), 2008
PMID: 18329260
Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions.
Chagnaud BP, Hofmann MH, Mogdans J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(2), 2007
PMID: 17075719
Kármán vortex street detection by the lateral line.
Chagnaud BP, Bleckmann H, Hofmann MH., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(7), 2007
PMID: 17503054
Micromachined biomimetic artificial haircell sensors.
Liu C., Bioinspir Biomim 2(4), 2007
PMID: 18037725
A review of fish swimming mechanics and behaviour in altered flows.
Liao JC., Philos Trans R Soc Lond B Biol Sci 362(1487), 2007
PMID: 17472925
Epidermal growth factor (EGF) expression in lateral line system and in taste buds of adult zebrafish (Brachidanio rerio).
Germanà A, Montalbano G, de Carlos F, Levanti MB, Abbate F, Vega JA, Ciriaco E., Neurosci Lett 397(3), 2006
PMID: 16406323
Distant touch hydrodynamic imaging with an artificial lateral line.
Yang Y, Chen J, Engel J, Pandya S, Chen N, Tucker C, Coombs S, Jones DL, Liu C., Proc Natl Acad Sci U S A 103(50), 2006
PMID: 17132735
Rapid responses of the cupula in the lateral line of ruffe (Gymnocephalus cernuus).
Curcić-Blake B, Netten SM., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(4), 2005
PMID: 15719242
Coding of lateral line stimuli in the goldfish midbrain in still and running water.
Engelmann J, Bleckmann H., Zoology (Jena) 107(2), 2004
PMID: 16351934
Effects of running water on brainstem lateral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli.
Kröther S, Bleckmann H, Mogdans J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(6), 2004
PMID: 14997333
Wind spectra and the response of the cercal system in the cockroach.
Rinberg D, Davidowitz H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(12), 2003
PMID: 14566422
Sensory integration in the hydrodynamic world of rainbow trout.
Montgomery JC, McDonald F, Baker CF, Carton AG, Ling N., Proc Biol Sci 270 Suppl 2(), 2003
PMID: 14667381
Immunohistochemical localization of BDNF-, TrkB- and TrkA-like proteins in the teleost lateral line system.
Germana A, Catania S, Cavallaro M, González-Martínez T, Ciriaco E, Hannestad J, Vega JA., J Anat 200(5), 2002
PMID: 12090394
Information-processing demands in electrosensory and mechanosensory lateral line systems.
Coombs S, New JG, Nelson M., J Physiol Paris 96(5-6), 2002
PMID: 14692483
A stimulus generating system for studying wind sensation in the American cockroach.
Rinberg D, Davidowitz H., J Neurosci Methods 121(1), 2002
PMID: 12393156
Tracking wakes: the nocturnal predatory strategy of piscivorous catfish.
Pohlmann K, Grasso FW, Breithaupt T., Proc Natl Acad Sci U S A 98(13), 2001
PMID: 11390962

11 References

Daten bereitgestellt von Europe PubMed Central.


H, Progress in Zoology 41(), 1994

AUTHOR UNKNOWN, 1989
Velocity- and acceleration-sensitive units in the trunk lateral line of the trout.
Kroese AB, Schellart NA., J. Neurophysiol. 68(6), 1992
PMID: 1491267

AUTHOR UNKNOWN, 1989

M, Acta Biol. Cracov. Ser. Zool. 10(), 1967
The functioning and significance of the lateral-line organs.
DIJKGRAAF S., Biol Rev Camb Philos Soc 38(), 1963
PMID: 14027866

AUTHOR UNKNOWN, 0

JC, Nature 389(), 1997

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 11081502
PubMed | Europe PMC

Suchen in

Google Scholar