Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T (2017)
Scientific Reports 7(1): 41890.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 1.69 MB
Abstract / Bemerkung
Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.
Scientific Reports
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides. Scientific Reports. 2017;7(1): 41890.
Dreischmeier, K., Budke, C., Wiehemeier, L., Kottke, T., & Koop, T. (2017). Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides. Scientific Reports, 7(1), 41890. doi:10.1038/srep41890
Dreischmeier, K., Budke, C., Wiehemeier, L., Kottke, T., and Koop, T. (2017). Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides. Scientific Reports 7:41890.
Dreischmeier, K., et al., 2017. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides. Scientific Reports, 7(1): 41890.
K. Dreischmeier, et al., “Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides”, Scientific Reports, vol. 7, 2017, : 41890.
Dreischmeier, K., Budke, C., Wiehemeier, L., Kottke, T., Koop, T.: Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides. Scientific Reports. 7, : 41890 (2017).
Dreischmeier, Katharina, Budke, Carsten, Wiehemeier, Lars, Kottke, Tilman, and Koop, Thomas. “Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides”. Scientific Reports 7.1 (2017): 41890.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes.
Rahman AT, Arai T, Yamauchi A, Miura A, Kondo H, Ohyama Y, Tsuda S., Sci Rep 9(1), 2019
PMID: 30760774
The study of atmospheric ice-nucleating particles via microfluidically generated droplets.
Tarn MD, Sikora SNF, Porter GCE, O'Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ., Microfluid Nanofluidics 22(5), 2018
PMID: 29720926
A chemical treatment method for obtaining clean and intact pollen shells of different species.
Gonzalez-Cruz P, Uddin MJ, Atwe SU, Abidi N, Gill HS., ACS Biomater Sci Eng 4(7), 2018
PMID: 31106262
Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins.
Schauperl M, Podewitz M, Ortner TS, Waibl F, Thoeny A, Loerting T, Liedl KR., Sci Rep 7(1), 2017
PMID: 28928396
Polymer mimics of biomacromolecular antifreezes.
Biggs CI, Bailey TL, Ben Graham, Stubbs C, Fayter A, Gibson MI., Nat Commun 8(1), 2017
PMID: 29142216

68 References

Daten bereitgestellt von Europe PubMed Central.

Ice nucleation and antinucleation in nature.
Zachariassen KE, Kristiansen E., Cryobiology 41(4), 2000
PMID: 11222024
Ice-Binding Proteins and Their Function.
Bar Dolev M, Braslavsky I, Davies PL., Annu. Rev. Biochem. 85(), 2016
PMID: 27145844
Interaction of ice binding proteins with ice, water and ions.
Oude Vrielink AS, Aloi A, Olijve LL, Voets IK., Biointerphases 11(1), 2016
PMID: 26787386

Hoose, Atmos. Chem. Phys. 12(), 2012
Ice nucleation by particles immersed in supercooled cloud droplets.
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME., Chem Soc Rev 41(19), 2012
PMID: 22932664

Pratt, Nat. Geosci. 2(), 2009
Ubiquity of biological ice nucleators in snowfall.
Christner BC, Morris CE, Foreman CM, Cai R, Sands DC., Science 319(5867), 2008
PMID: 18309078

Hader, Atmos. Chem. Phys. 14(), 2014

Hiranuma, Nat. Geosci. 8(), 2015
The relevance of nanoscale biological fragments for ice nucleation in clouds.
O'Sullivan D, Murray BJ, Ross JF, Whale TF, Price HC, Atkinson JD, Umo NS, Webb ME., Sci Rep 5(), 2015
PMID: 25626414

Iannone, Atmos. Chem. Phys. 11(), 2011

Huffman, Atmos. Chem. Phys. 13(), 2013

Knopf, Nat. Geosci. 4(), 2010

Wang, Nat. Geosci. 9(), 2016
Identification of ice nucleation active sites on feldspar dust particles.
Zolles T, Burkart J, Hausler T, Pummer B, Hitzenberger R, Grothe H., J Phys Chem A 119(11), 2015
PMID: 25584435
Heterogeneous nucleation of ice on carbon surfaces.
Lupi L, Hudait A, Molinero V., J. Am. Chem. Soc. 136(8), 2014
PMID: 24495074
Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers.
Cox SJ, Kathmann SM, Slater B, Michaelides A., J Chem Phys 142(18), 2015
PMID: 25978903
Identification and purification of a bacterial ice-nucleation protein.
Wolber PK, Deininger CA, Southworth MW, Vandekerckhove J, van Montagu M, Warren GJ., Proc. Natl. Acad. Sci. U.S.A. 83(19), 1986
PMID: 3020542

Krog, Nature 282(), 1979

Duman, J. Comp. Physiol. B 154(), 1984
Characterization of biological ice nuclei from a lichen.
Kieft TL, Ruscetti T., J. Bacteriol. 172(6), 1990
PMID: 2188965
Physiological and ecological significance of biological ice nucleators.
Lundheim R., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357(1423), 2002
PMID: 12171657


Pummer, Atmos. Chem. Phys. 12(), 2012
Molecules derived from the extremes of life.
Wilson ZE, Brimble MA., Nat Prod Rep 26(1), 2009
PMID: 19374122
Antifreeze Proteins: Structures and Mechanisms of Function.
Yeh Y, Feeney RE., Chem. Rev. 96(2), 1996
PMID: 11848766
A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides.
Walters KR Jr, Serianni AS, Sformo T, Barnes BM, Duman JG., Proc. Natl. Acad. Sci. U.S.A. 106(48), 2009
PMID: 19934038

Gibson, Polym. Chem 1(), 2010
Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis.
Govindarajan AG, Lindow SE., Proc. Natl. Acad. Sci. U.S.A. 85(5), 1988
PMID: 16593912
Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect.
Graether SP, Kuiper MJ, Gagne SM, Walker VK, Jia Z, Sykes BD, Davies PL., Nature 406(6793), 2000
PMID: 10917537
Novel dimeric β-helical model of an ice nucleation protein with bridged active sites.
Garnham CP, Campbell RL, Walker VK, Davies PL., BMC Struct. Biol. 11(), 2011
PMID: 21951648
Anchored clathrate waters bind antifreeze proteins to ice.
Garnham CP, Campbell RL, Davies PL., Proc. Natl. Acad. Sci. U.S.A. 108(18), 2011
PMID: 21482800

Xu, Can. J. Microbiol. 44(), 1998
A part of ice nucleation protein exhibits the ice-binding ability.
Kobashigawa Y, Nishimiya Y, Miura K, Ohgiya S, Miura A, Tsuda S., FEBS Lett. 579(6), 2005
PMID: 15733862

Pummer, Atmos. Chem. Phys. 15(), 2015

Augustin, Atmos. Chem. Phys. 13(), 2013
Parameterizations for ice nucleation in biological and atmospheric systems.
Koop T, Zobrist B., Phys Chem Chem Phys 11(46), 2009
PMID: 19924318

Attard, Atmos. Chem. Phys. 12(), 2012
Purification of antifreeze proteins by adsorption to ice.
Kuiper MJ, Lankin C, Gauthier SY, Walker VK, Davies PL., Biochem. Biophys. Res. Commun. 300(3), 2003
PMID: 12507497

Peltier, Cryst. Growth Des. 10(), 2010
Cold-active winter rye glucanases with ice-binding capacity.
Yaish MW, Doxey AC, McConkey BJ, Moffatt BA, Griffith M., Plant Physiol. 141(4), 2006
PMID: 16815958

Budke, Cryst. Growth Des. 14(), 2014

Ramlov, Cryoletters 26(), 2005


Pummer, J. Raman Spectrosc. 44(), 2013
FT-IR study of plant cell wall model compounds: pectic polyasaccharides and hemicelluloses.
Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A., Carbohydrate polymers. 43(2), 2000
PMID: IND23259203


Cabassi, Carbohydr. Res. 63(), 1978

Liu, Polymers (Basel) 4(), 2012

Diehl, Atmos. Res. 61(), 2002

von, Atmos. Res. 78(), 2005
Identification of a novel anti-ice-nucleating polysaccharide from Bacillus thuringiensis YY529.
Yamashita Y, Kawahara H, Obata H., Biosci. Biotechnol. Biochem. 66(5), 2002
PMID: 12092845

Hoose, J. Atmos. Sci. 67(), 2010
Source of Bet v 1 loaded inhalable particles from birch revealed.
Schappi GF, Taylor PE, Staff IA, Suphioglu C, Knox RB., Sex. Plant Reprod. 10(6), 1997
PMID: IND21238814
Heterogeneous ice nucleation in aqueous solutions: the role of water activity.
Zobrist B, Marcolli C, Peter T, Koop T., J Phys Chem A 112(17), 2008
PMID: 18363389

Budke, Atmos. Meas. Tech 8(), 2015

Kottke, J. Phys. Chem. Lett. 1(), 2010


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 28157236
PubMed | Europe PMC

Suchen in

Google Scholar