Fundamental properties of high-quality carbon nanofoam: from low to high density

Frese N, Mitchell ST, Neumann C, Bowers A, Gölzhäuser A, Sattler K (2016)
BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7: 2065-2073.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Frese, NatalieUniBi; Mitchell, Shelby Taylor; Neumann, Christof; Bowers, Amanda; Gölzhäuser, ArminUniBi ; Sattler, Klaus
Abstract / Bemerkung
Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with approximate to 2-3 mu m average diameter. Higher density foams contain larger-sized micropearls (approximate to 6-9 mu m diameter) which often coalesced to form nonspherical mu m-sized units. Both, low-and high-density foams are comprised of predominantly sp(2)-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp(3)-type electronic contribution, related to the inclusion of sp(3) connections in their surface network.
Stichworte
carbon nanofoam; helium ion microscopy; hydrothermal carbonization; nanocarbons
Erscheinungsjahr
2016
Zeitschriftentitel
BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Band
7
Seite(n)
2065-2073
ISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2908537

Zitieren

Frese N, Mitchell ST, Neumann C, Bowers A, Gölzhäuser A, Sattler K. Fundamental properties of high-quality carbon nanofoam: from low to high density. BEILSTEIN JOURNAL OF NANOTECHNOLOGY. 2016;7:2065-2073.
Frese, N., Mitchell, S. T., Neumann, C., Bowers, A., Gölzhäuser, A., & Sattler, K. (2016). Fundamental properties of high-quality carbon nanofoam: from low to high density. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 7, 2065-2073. doi:10.3762/bjnano.7.197
Frese, Natalie, Mitchell, Shelby Taylor, Neumann, Christof, Bowers, Amanda, Gölzhäuser, Armin, and Sattler, Klaus. 2016. “Fundamental properties of high-quality carbon nanofoam: from low to high density”. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7: 2065-2073.
Frese, N., Mitchell, S. T., Neumann, C., Bowers, A., Gölzhäuser, A., and Sattler, K. (2016). Fundamental properties of high-quality carbon nanofoam: from low to high density. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7, 2065-2073.
Frese, N., et al., 2016. Fundamental properties of high-quality carbon nanofoam: from low to high density. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 7, p 2065-2073.
N. Frese, et al., “Fundamental properties of high-quality carbon nanofoam: from low to high density”, BEILSTEIN JOURNAL OF NANOTECHNOLOGY, vol. 7, 2016, pp. 2065-2073.
Frese, N., Mitchell, S.T., Neumann, C., Bowers, A., Gölzhäuser, A., Sattler, K.: Fundamental properties of high-quality carbon nanofoam: from low to high density. BEILSTEIN JOURNAL OF NANOTECHNOLOGY. 7, 2065-2073 (2016).
Frese, Natalie, Mitchell, Shelby Taylor, Neumann, Christof, Bowers, Amanda, Gölzhäuser, Armin, and Sattler, Klaus. “Fundamental properties of high-quality carbon nanofoam: from low to high density”. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7 (2016): 2065-2073.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

66 References

Daten bereitgestellt von Europe PubMed Central.


Iwu K, Lombardo A, Sanz R, Scirè S, Mirabella S., 2016

Jo H, Cho Y-H, Choi M, Cho J, Um J, Sung Y-E, Choe H., 2014

Rezaei B, Mokhtarianpour M, Ensafi A., 2015

Jia H, An J, Guo X, Su C, Zhang L, Zhou H, Xie C., 2015

Johnston L, Biener M, Ye J, Baumann T, Kucheyev S., 2015

Naumkin F, Wales D., 2012

Figueroa E, Tramontina D, Gutiérrez G, Bringa E., 2015

Grant-Jacob J, Mills B, Eason R., 2014

Iino T, Nakamura K., 2009

Kurek A, Xalter R, Stürzel M, Mülhaupt R., 2013

Liu J, Zhang L, Yang Q, Li C., 2008

Mille C, Corkery R., 2013
Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms.
Barty A, Marchesini S, Chapman HN, Cui C, Howells MR, Shapiro DA, Minor AM, Spence JC, Weierstall U, Ilavsky J, Noy A, Hau-Riege SP, Artyukhin AB, Baumann T, Willey T, Stolken J, van Buuren T, Kinney JH., Phys. Rev. Lett. 101(5), 2008
PMID: 18764404
Graphene, Fullerenes, Nanotubes, and Nanodiamonds
Sattler K., 2016

Bryning M, Milkie D, Islam M, Hough L, Kikkawa J, Yodh A., 2007
A three-dimensional carbon nanotube network for water treatment.
Camilli L, Pisani C, Gautron E, Scarselli M, Castrucci P, D'Orazio F, Passacantando M, Moscone D, De Crescenzi M., Nanotechnology 25(6), 2014
PMID: 24434944

Rode A, Elliman R, Gamaly E, Veinger A, Christy A, Hyde S, Luther-Davies B., 2002
Carbon nanofoam formed by laser ablation.
Kohno H, Tatsutani K, Ichikawa S., J Nanosci Nanotechnol 12(3), 2012
PMID: 22755133

Spanakis E, Pervolaraki M, Giapintzakis J, Katsarakis N, Koudoumas E, Vernardou D., 2013
Ultralight anisotropic foams from layered aligned carbon nanotube sheets.
Faraji S, Stano KL, Yildiz O, Li A, Zhu Y, Bradford PD., Nanoscale 7(40), 2015
PMID: 26419855
Building energy-and size-scalable 3D energy-storage architectures with carbon nanofoam paper
Rolison D, Sassin M, Long J, Wallace J, Chervin C., 0

Della R, Eugénio S, Silva T, Carmezim M, Montemor M., 2015

Mitchell S, Frese N, Gölzhäuser A, Bowers A, Sattler K., 2015
The history and development of the helium ion microscope.
Economou NP, Notte JA, Thompson WB., Scanning 34(2), 2011
PMID: 21611954
Ionoluminescence in the helium ion microscope.
Boden SA, Franklin TM, Scipioni L, Bagnall DM, Rutt HN., Microsc. Microanal. 18(6), 2012
PMID: 23237545

van R, Hlawacek G, Dutta S, Poelsema B., 2015

Ohya K, Yamanaka T., 2013

Sijbrandij S, Notte J, Sanford C, Hill R., 2010

Sijbrandij S, Thompson B, Notte J, Ward B, Ecounomou N., 2008

Oida S, McFeely F, Bol A., 2011

Tagawaa M, Ykota K, Kitamura A, Matsumoto K, Yoshigoe A, Teraoka Y, Kanda K, Niibe M., 2010

Kerber P, Porter L, McCullough L, Kowalewski T, Engelhard M, Baer D., 2012

Tay B, Shi X, Tan H, Chua D., 1999

Haerle R, Riedo E, Pasquarello A, Baldereschi A., 2002

Gordeev S, Grechinskaya A, Danishevskii A, Smorgonskaya E, Shchukarev A., 2000

Rao K, Kishore G, Rao K, Rao M, Rao Y., 2010

Manickam M, Takata M., 2002

Takabayashi S, Okamoto K, Shimada K, Motomitsu K, Motoyama H, Nakatani T, Sakaue H, Suzuki H, Takahagi T., 2008

Lide D., 2005

Feng J, Feng J, Zhang C., 2012

Marie J, Chenitz R, Chatenet M, Berthon-Fabry S, Cornet N, Achard P., 2009

Zhou B, Zhang R, Guo Q-G, Li Z-H, Hu Z-J, Li J-N, Dong W-S., 2011

dos R, de F, Rivelino R., 2012
Pore size controllable preparation for low density porous nano-carbon.
Feng Y, Wang J, Ge L, Jiang B, Miao L, Tanemura M., J Nanosci Nanotechnol 13(10), 2013
PMID: 24245178

Peng L, Morris J., 2012

Shin S, Tran I, Willey T, van T, Ilavsky J, Biener M, Worsley M, Hamza A, Kucheyev S., 2014

Chaurasia S, Tripathi S, Munda D, Mishra G, Murali C, Gupta N, Dhareshwar L, Rassall A, Tallents G, Singh R., 2010

Zani A, Dellasega D, Russo V, Passoni M., 2013

Urakawa T, Matsuzaki H, Yamashita D, Uchida G, Koga K, Shiratani M, Setsuhara Y, Sekine M, Hori M., 2013
Growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests on conductive Ti/Cu supports.
Sugime H, Esconjauregui S, D'Arsie L, Yang J, Makaryan T, Robertson J., ACS Appl Mater Interfaces 6(17), 2014
PMID: 25126887

Brandt R, Fricke J., 2004

Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S., 1996
Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films.
Diaz J, Paolicelli G, Ferrer S, Comin F., Phys. Rev., B Condens. Matter 54(11), 1996
PMID: 9984485

Hontoria-Lucas C, López-Peinado A, de J, Rojas-Cervantes M, Martín-Aranda R., 1995

Zhou J-H, Sui Z-J, Zhu J, Li P, Chen D, Dai Y-C, Yuan W-K., 2007

Plomp A, Su D, de K, Bitter J., 2009
The chemistry of graphene oxide.
Dreyer DR, Park S, Bielawski CW, Ruoff RS., Chem Soc Rev 39(1), 2009
PMID: 20023850

Kondo H, Nishida Y., 2007

Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kötz R., 2001

Boehm H., 2002

Fan L-Z, Qiao S, Song W, Wu M, He X, Qu X., 2013

Hou P, Liu C, Tong Y, Xu S, Liu M, Cheng H., 2001

Park T-J, Banerjee S, Hemraj-Benny T, Wong S., 2006

Bazargan A, Yan Y, Hui C, McKay G., 2013
Chemical and structural characterization of carbon nanotube surfaces.
Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D., Anal Bioanal Chem 396(3), 2010
PMID: 20052581
Material in PUB:
Teil dieser Dissertation
Synthesis and analysis of carbon nanomaterials
Frese N (2019)
Bielefeld: Universität Bielefeld.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28144554
PubMed | Europe PMC

Suchen in

Google Scholar