Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation

Schramke H, Laermann V, Tegetmeyer H, Brachmann A, Jung K, Altendorf K (2017)
MicrobiologyOpen 6(3): e00438.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schramke, Hannah; Laermann, Vera; Tegetmeyer, HalinaUniBi ; Brachmann, Andreas; Jung, Kirsten; Altendorf, Karlheinz
Abstract / Bemerkung
Two-component signal transduction constitutes the predominant strategy used by bacteria to adapt to fluctuating environments. The KdpD/KdpE system is one of the most widespread, and is crucial for K+ homeostasis. In Escherichia coli, the histidine kinase KdpD senses K+ availability, whereas the response regulator KdpE activates synthesis of the high-affinity K+ uptake system KdpFABC. Here we show that, in the absence of KdpD, kdpFABC expression can be activated via phosphorylation of KdpE by the histidine kinase PhoR. PhoR and its cognate response regulator PhoB comprise a phosphate-responsive two-component system, which senses phosphate limitation indirectly through the phosphate transporter PstCAB and its accessory protein PhoU. In vivo two-hybrid interaction studies based on the bacterial adenylate cyclase reveal pairwise interactions between KdpD, PhoR, and PhoU. Finally, we demonstrate that cross-regulation between the kdpFABC and pstSCAB operons occurs in both directions under simultaneous K+ and phosphate limitation, both in vitro and in vivo. This study for the first time demonstrates direct coupling between intracellular K+ and phosphate homeostasis and provides a mechanism for fine-tuning of the balance between positively and negatively charged ions in the bacterial cell.
Erscheinungsjahr
2017
Zeitschriftentitel
MicrobiologyOpen
Band
6
Ausgabe
3
Art.-Nr.
e00438
ISSN
2045-8827
Page URI
https://pub.uni-bielefeld.de/record/2908402

Zitieren

Schramke H, Laermann V, Tegetmeyer H, Brachmann A, Jung K, Altendorf K. Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. MicrobiologyOpen. 2017;6(3): e00438.
Schramke, H., Laermann, V., Tegetmeyer, H., Brachmann, A., Jung, K., & Altendorf, K. (2017). Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. MicrobiologyOpen, 6(3), e00438. doi:10.1002/mbo3.438
Schramke, H., Laermann, V., Tegetmeyer, H., Brachmann, A., Jung, K., and Altendorf, K. (2017). Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. MicrobiologyOpen 6:e00438.
Schramke, H., et al., 2017. Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. MicrobiologyOpen, 6(3): e00438.
H. Schramke, et al., “Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation”, MicrobiologyOpen, vol. 6, 2017, : e00438.
Schramke, H., Laermann, V., Tegetmeyer, H., Brachmann, A., Jung, K., Altendorf, K.: Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. MicrobiologyOpen. 6, : e00438 (2017).
Schramke, Hannah, Laermann, Vera, Tegetmeyer, Halina, Brachmann, Andreas, Jung, Kirsten, and Altendorf, Karlheinz. “Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation”. MicrobiologyOpen 6.3 (2017): e00438.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Coordinated regulation of transcription by CcpA and the Staphylococcus aureus two-component system HptRS.
Reed JM, Olson S, Brees DF, Griffin CE, Grove RA, Davis PJ, Kachman SD, Adamec J, Somerville GA., PLoS One 13(12), 2018
PMID: 30540769
Regulation of potassium dependent ATPase (kdp) operon of Deinococcus radiodurans.
Dani P, Ujaoney AK, Apte SK, Basu B., PLoS One 12(12), 2017
PMID: 29206865

78 References

Daten bereitgestellt von Europe PubMed Central.

Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli.
Amemura M, Makino K, Shinagawa H, Kobayashi A, Nakata A., J. Mol. Biol. 184(2), 1985
PMID: 2993631
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H., Mol. Syst. Biol. 2(), 2006
PMID: 16738554
The complete genome sequence of Escherichia coli K-12.
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y., Science 277(5331), 1997
PMID: 9278503
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Regulation of cytoplasmic pH in bacteria.
Booth IR., Microbiol. Rev. 49(4), 1985
PMID: 3912654
The last generation of bacterial growth in limiting nutrient.
Bren A, Hart Y, Dekel E, Koster D, Alon U., BMC Syst Biol 7(), 2013
PMID: 23531321
The Pho regulon and the pathogenesis of Escherichia coli.
Crepin S, Chekabab SM, Le Bihan G, Bertrand N, Dozois CM, Harel J., Vet. Microbiol. 153(1-2), 2011
PMID: 21700403
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.
Datsenko KA, Wanner BL., Proc. Natl. Acad. Sci. U.S.A. 97(12), 2000
PMID: 10829079
Evolutionary insight from whole-genome sequencing of experimentally evolved microbes.
Dettman JR, Rodrigue N, Melnyk AH, Wong A, Bailey SF, Kassen R., Mol. Ecol. 21(9), 2012
PMID: 22332770
The roles and regulation of potassium in bacteria.
Epstein W., Prog. Nucleic Acid Res. Mol. Biol. 75(), 2003
PMID: 14604015
Potassium transport loci in Escherichia coli K-12.
Epstein W, Kim BS., J. Bacteriol. 108(2), 1971
PMID: 4942756
A K+ transport ATPase in Escherichia coli.
Epstein W, Whitelaw V, Hesse J., J. Biol. Chem. 253(19), 1978
PMID: 211128
A comprehensive toolbox for the rapid construction of lacZ fusion reporters.
Fried L, Lassak J, Jung K., J. Microbiol. Methods 91(3), 2012
PMID: 23022912
Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli.
Hamann K, Zimmann P, Altendorf K., J. Bacteriol. 190(7), 2008
PMID: 18245296
The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress.
Heermann R, Weber A, Mayer B, Ott M, Hauser E, Gabriel G, Pirch T, Jung K., J. Mol. Biol. 386(1), 2008
PMID: 19101563
Dynamics of an interactive network composed of a bacterial two-component system, a transporter and K+ as mediator.
Heermann R, Zigann K, Gayer S, Rodriguez-Fernandez M, Banga JR, Kremling A, Jung K., PLoS ONE 9(2), 2014
PMID: 24586952
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Global regulation by the seven-component Pi signaling system.
Hsieh YJ, Wanner BL., Curr. Opin. Microbiol. 13(2), 2010
PMID: 20171928
Purification, reconstitution, and characterization of KdpD, the turgor sensor of Escherichia coli.
Jung K, Tjaden B, Altendorf K., J. Biol. Chem. 272(16), 1997
PMID: 9099740

Karimova, 2005
A bacterial two-hybrid system based on a reconstituted signal transduction pathway.
Karimova G, Pidoux J, Ullmann A, Ladant D., Proc. Natl. Acad. Sci. U.S.A. 95(10), 1998
PMID: 9576956
Bacterial sensor kinases: diversity in the recognition of environmental signals.
Krell T, Lacal J, Busch A, Silva-Jimenez H, Guazzaroni ME, Ramos JL., Annu. Rev. Microbiol. 64(), 2010
PMID: 20825354
The sensor kinase KdpD of Escherichia coli senses external K+.
Laermann V, Cudic E, Kipschull K, Zimmann P, Altendorf K., Mol. Microbiol. 88(6), 2013
PMID: 23651428
Osmotic control of kdp operon expression in Escherichia coli.
Laimins LA, Rhoads DB, Epstein W., Proc. Natl. Acad. Sci. U.S.A. 78(1), 1981
PMID: 6787588
The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis.
Lamarche MG, Wanner BL, Crepin S, Harel J., FEMS Microbiol. Rev. 32(3), 2008
PMID: 18248418
Protein measurement with the Folin phenol reagent.
LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ., J. Biol. Chem. 193(1), 1951
PMID: 14907713
Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus.
Lubin EA, Henry JT, Fiebig A, Crosson S, Laub MT., J. Bacteriol. 198(1), 2015
PMID: 26483520
Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli.
Luttmann D, Heermann R, Zimmer B, Hillmann A, Rampp IS, Jung K, Gorke B., Mol. Microbiol. 72(4), 2009
PMID: 19400808
Expression of the Kdp ATPase is consistent with regulation by turgor pressure.
Malli R, Epstein W., J. Bacteriol. 180(19), 1998
PMID: 9748442
Stimulus perception in bacterial signal-transducing histidine kinases.
Mascher T, Helmann JD, Unden G., Microbiol. Mol. Biol. Rev. 70(4), 2006
PMID: 17158704

Miller, 1972

Miller, 1992
Photorhabdus luminescens genes induced upon insect infection.
Munch A, Stingl L, Jung K, Heermann R., BMC Genomics 9(), 2008
PMID: 18489737
The structural basis of ribosome activity in peptide bond synthesis.
Nissen P, Hansen J, Ban N, Moore PB, Steitz TA., Science 289(5481), 2000
PMID: 10937990
Determinants of specificity in two-component signal transduction.
Podgornaia AI, Laub MT., Curr. Opin. Microbiol. 16(2), 2013
PMID: 23352354
Effect of glpT and glpD mutations on expression of the phoA gene in Escherichia coli.
Rao NN, Roberts MF, Torriani A, Yashphe J., J. Bacteriol. 175(1), 1993
PMID: 8416912
ABC transporters: the power to change.
Rees DC, Johnson E, Lewinson O., Nat. Rev. Mol. Cell Biol. 10(3), 2009
PMID: 19234479
Two systems for the uptake of phosphate in Escherichia coli.
Rosenberg H, Gerdes RG, Chegwidden K., J. Bacteriol. 131(2), 1977
PMID: 328484
The Pho regulon: a huge regulatory network in bacteria.
Santos-Beneit F., Front Microbiol 6(), 2015
PMID: 25983732
The ImageJ ecosystem: An open platform for biomedical image analysis.
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW., Mol. Reprod. Dev. 82(7-8), 2015
PMID: 26153368
A Dual-Sensing Receptor Confers Robust Cellular Homeostasis.
Schramke H, Tostevin F, Heermann R, Gerland U, Jung K., Cell Rep 16(1), 2016
PMID: 27320909
Cellular applications of 31P and 13C nuclear magnetic resonance.
Shulman RG, Brown TR, Ugurbil K, Ogawa S, Cohen SM, den Hollander JA., Science 205(4402), 1979
PMID: 36664
Two-component signal transduction.
Stock AM, Robinson VL, Goudreau PN., Annu. Rev. Biochem. 69(), 2000
PMID: 10966457
Clarification of the structural and functional features of the osmoregulated kdp operon of Escherichia coli.
Sugiura A, Nakashima K, Tanaka K, Mizuno T., Mol. Microbiol. 6(13), 1992
PMID: 1630316
Sensor complexes regulating two-component signal transduction.
Szurmant H, White RA, Hoch JA., Curr. Opin. Struct. Biol. 17(6), 2007
PMID: 17913492
31P nuclear magnetic resonance studies of bioenergetics and glycolysis in anaerobic Escherichia coli cells.
Ugurbil K, Rottenberg H, Glynn P, Shulman RG., Proc. Natl. Acad. Sci. U.S.A. 75(5), 1978
PMID: 27785
Cation transport in Escherichia coli. VII. Potassium requirement for phosphate uptake.
Weiden PL, Epstein W, Schultz SG., J. Gen. Physiol. 50(6), 1967
PMID: 5340610
Stochastic activation of the response regulator PhoB by noncognate histidine kinases
Zhou, Journal of Integrative Bioinformatics 2(), 2005
Membrane topology analysis of the sensor kinase KdpD of Escherichia coli.
Zimmann P, Puppe W, Altendorf K., J. Biol. Chem. 270(47), 1995
PMID: 7499326
The extension of the fourth transmembrane helix of the sensor kinase KdpD of Escherichia coli is involved in sensing.
Zimmann P, Steinbrugge A, Schniederberend M, Jung K, Altendorf K., J. Bacteriol. 189(20), 2007
PMID: 17704218

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28097817
PubMed | Europe PMC

Suchen in

Google Scholar