Comparative analysis of different xanthan samples by atomic force microscopy

Teckentrup J, Al-Hamood O, Steffens T, Bednarz H, Walhorn V, Niehaus K, Anselmetti D (2017)
Journal of Biotechnology 257: 2-8.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The polysaccharide xanthan which is produced by the gamma-proteobacterium Xanthomonas campestris is used as a food thickening agent and rheologic modifier in numerous food, cosmetics and technical applications. Its great commercial importance stimulated biotechnological approaches to optimize the xanthan production. By targeted genetic modification the metabolism of Xanthomonas can be modified in such a way that the xanthan production efficiency and/or the shear-thickening potency is optimized. Using atomic force microscopy (AFM) the secondary structure of single xanthan polymers produced by the wild type Xanthomonas campestris B100 and several genetically modified variations were analyzed. We found a wide variation of characteristic differences between xanthan molecules produced by different strains. The structures ranged from single-stranded coiled polymers to branched xanthan double-strands. These results can help to get a better understanding of the polymerization- and secretion-machinery that are relevant for xanthan synthesis. Furthermore, we demonstrate that the xanthan secondary structure strongly correlates with its viscosifying properties. Copyright A 2016 Elsevier B.V. All rights reserved.
Erscheinungsjahr
2017
Zeitschriftentitel
Journal of Biotechnology
Band
257
Seite(n)
2-8
ISSN
1873-4863
Page URI
https://pub.uni-bielefeld.de/record/2908271

Zitieren

Teckentrup J, Al-Hamood O, Steffens T, et al. Comparative analysis of different xanthan samples by atomic force microscopy. Journal of Biotechnology. 2017;257:2-8.
Teckentrup, J., Al-Hamood, O., Steffens, T., Bednarz, H., Walhorn, V., Niehaus, K., & Anselmetti, D. (2017). Comparative analysis of different xanthan samples by atomic force microscopy. Journal of Biotechnology, 257, 2-8. doi:10.1016/j.jbiotec.2016.11.032
Teckentrup, Julia, Al-Hamood, Orooba, Steffens, Tim, Bednarz, Hanna, Walhorn, Volker, Niehaus, Karsten, and Anselmetti, Dario. 2017. “Comparative analysis of different xanthan samples by atomic force microscopy”. Journal of Biotechnology 257: 2-8.
Teckentrup, J., Al-Hamood, O., Steffens, T., Bednarz, H., Walhorn, V., Niehaus, K., and Anselmetti, D. (2017). Comparative analysis of different xanthan samples by atomic force microscopy. Journal of Biotechnology 257, 2-8.
Teckentrup, J., et al., 2017. Comparative analysis of different xanthan samples by atomic force microscopy. Journal of Biotechnology, 257, p 2-8.
J. Teckentrup, et al., “Comparative analysis of different xanthan samples by atomic force microscopy”, Journal of Biotechnology, vol. 257, 2017, pp. 2-8.
Teckentrup, J., Al-Hamood, O., Steffens, T., Bednarz, H., Walhorn, V., Niehaus, K., Anselmetti, D.: Comparative analysis of different xanthan samples by atomic force microscopy. Journal of Biotechnology. 257, 2-8 (2017).
Teckentrup, Julia, Al-Hamood, Orooba, Steffens, Tim, Bednarz, Hanna, Walhorn, Volker, Niehaus, Karsten, and Anselmetti, Dario. “Comparative analysis of different xanthan samples by atomic force microscopy”. Journal of Biotechnology 257 (2017): 2-8.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Novel Endotype Xanthanase from Xanthan-Degrading Microbacterium sp. Strain XT11.
Yang F, Li H, Sun J, Guo X, Zhang X, Tao M, Chen X, Li X., Appl Environ Microbiol 85(2), 2019
PMID: 30413476
Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data.
Alkhateeb RS, Rückert C, Rupp O, Pucker B, Hublik G, Wibberg D, Niehaus K, Pühler A, Vorhölter FJ., J Biotechnol 253(), 2017
PMID: 28506932

30 References

Daten bereitgestellt von Europe PubMed Central.

Determination of the viscoelastic properties of a homologous series of the fermentation polymer xanthan gum
Arendt, Die Angew. Makromol. Chem. 259(), 1998
Modified xanthan – its preparation and viscosity
Bradshaw, Carbohydr. Polym. 3(), 1983
Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain.
Cadmus MC, Rogovin SP, Burton KA, Pittsley JE, Knutson CA, Jeanes A., Can. J. Microbiol. 22(7), 1976
PMID: 963616
Influence of acetyl and pyruvate contents on rheological properties of xanthan in dilute solution
Callet, Int. J. Biol. Macromol. 9(), 1987
Single molecule study of xanthan conformation using atomic force microscopy.
Camesano TA, Wilkinson KJ., Biomacromolecules 2(4), 2001
PMID: 11777391
Thermodynamic model of viscosity of hydrocarbons and their mixtures
Derevich, Int. J. Heat Mass Transfer 53(), 2010
Polymer conformational statistics III. modified gaussian models of stiff chains
Fixman, J. Chem. Phys. 58(4), 1973
Revisiting the conformation of xanthan and the effect of industrially relevant treatments
Gulrez SKH, Al-Assaf S, Fang Y, Phillips GO, Gunning AP., Carbohydrate polymers. 90(3), 2012
PMID: IND600879868
Scanning tunnelling microscopy of xanthan gum.
Gunning AP, McMaster TJ, Morris VJ., Carbohydrate polymers. 21(1), 1993
PMID: IND20406148
Imaging xanthan gum in air by ac tapping mode atomic force microscopy
Gunning, Ultramicroscopy 63(), 1996

Hublik, 2012
Imaging xanthan gum by atomic force microscopy
Kirby, Carbohydr. Res. 267(), 1995
Definitions of terms relating to individual macromolecules, their assemblies, and dilute polymer solutions
Kratochvíl, Pure Appl. Chem. 61(2), 1989
Recent advances in microbial biopolymer production and purification.
Kreyenschulte D, Krull R, Margaritis A., Crit. Rev. Biotechnol. 34(1), 2012
PMID: 23190337
Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains.
Lamour G, Kirkegaard JB, Li H, Knowles TP, Gsponer J., Source Code Biol Med 9(), 2014
PMID: 25093038
Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy.
Liang H, Zeng G, Li Y, Zhang S, Zhao H, Guo L, Liu B, Dong M., Beilstein J Nanotechnol 5(), 2014
PMID: 24778961
Visualisation of xanthan conformation by atomic force microscopy.
Moffat J, Morris VJ, Al-Assaf S, Gunning AP., Carbohydr Polym 148(), 2016
PMID: 27185152
Xanthan gum molecular conformation and interactions
Moorhouse, 1977
Gelation of polysaccharides
Morris, 1998

AUTHOR UNKNOWN, 0

Phillips, 2009

Rubinstein, 2003

AUTHOR UNKNOWN, 0
Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis.
Schatschneider S, Huber C, Neuweger H, Watt TF, Puhler A, Eisenreich W, Wittmann C, Niehaus K, Vorholter FJ., Mol Biosyst 10(10), 2014
PMID: 25072918
Influence of acetyl and pyruvate substituents on the solution properties of xanthan polysaccharide.
Shatwell KP, Sutherland IW, Ross-Murphy SB., Int. J. Biol. Macromol. 12(2), 1990
PMID: 2078534
Influence of the pyruvate content of xanthan on macromolecular association in solution
Smith, Int. J. Biol. Macromol. 3(2), 1981

Van, 2008
The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis.
Vorholter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Ruckert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puhler A., J. Biotechnol. 134(1-2), 2008
PMID: 18304669

Waigh, 2007
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27919690
PubMed | Europe PMC

Suchen in

Google Scholar