A physically constrained classical description of the homogeneous nucleation of ice in water

Koop T, Murray BJ (2016)
JOURNAL OF CHEMICAL PHYSICS 145(21): 211915.

Download
OA 727.46 KB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
;
Abstract / Bemerkung
Liquid water can persist in a supercooled state to below 238 K in the Earth's atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227-232 K on very short time scales using an X-ray laser technique. In summary, we present a new physically constrained parameterization for homogeneous ice nucleation which is consistent with the latest literature nucleation data and our physical understanding of the properties of supercooled water. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF CHEMICAL PHYSICS
Band
145
Ausgabe
21
Art.-Nr.
211915
ISSN
eISSN
PUB-ID

Zitieren

Koop T, Murray BJ. A physically constrained classical description of the homogeneous nucleation of ice in water. JOURNAL OF CHEMICAL PHYSICS. 2016;145(21): 211915.
Koop, T., & Murray, B. J. (2016). A physically constrained classical description of the homogeneous nucleation of ice in water. JOURNAL OF CHEMICAL PHYSICS, 145(21), 211915. doi:10.1063/1.4962355
Koop, T., and Murray, B. J. (2016). A physically constrained classical description of the homogeneous nucleation of ice in water. JOURNAL OF CHEMICAL PHYSICS 145:211915.
Koop, T., & Murray, B.J., 2016. A physically constrained classical description of the homogeneous nucleation of ice in water. JOURNAL OF CHEMICAL PHYSICS, 145(21): 211915.
T. Koop and B.J. Murray, “A physically constrained classical description of the homogeneous nucleation of ice in water”, JOURNAL OF CHEMICAL PHYSICS, vol. 145, 2016, : 211915.
Koop, T., Murray, B.J.: A physically constrained classical description of the homogeneous nucleation of ice in water. JOURNAL OF CHEMICAL PHYSICS. 145, : 211915 (2016).
Koop, Thomas, and Murray, Benjamin J. “A physically constrained classical description of the homogeneous nucleation of ice in water”. JOURNAL OF CHEMICAL PHYSICS 145.21 (2016): 211915.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-02-03T08:46:06Z

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Pore condensation and freezing is responsible for ice formation below water saturation for porous particles.
David RO, Marcolli C, Fahrni J, Qiu Y, Perez Sirkin YA, Molinero V, Mahrt F, Brühwiler D, Lohmann U, Kanji ZA., Proc Natl Acad Sci U S A 116(17), 2019
PMID: 30948638
Shrinking of Rapidly Evaporating Water Microdroplets Reveals their Extreme Supercooling.
Goy C, Potenza MAC, Dedera S, Tomut M, Guillerm E, Kalinin A, Voss KO, Schottelius A, Petridis N, Prosvetov A, Tejeda G, Fernández JM, Trautmann C, Caupin F, Glasmacher U, Grisenti RE., Phys Rev Lett 120(1), 2018
PMID: 29350942
Ice nucleation rates near ∼225 K.
Amaya AJ, Wyslouzil BE., J Chem Phys 148(8), 2018
PMID: 29495784
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
Whale TF, Holden MA, Wilson TW, O'Sullivan D, Murray BJ., Chem Sci 9(17), 2018
PMID: 29780544
The study of atmospheric ice-nucleating particles via microfluidically generated droplets.
Tarn MD, Sikora SNF, Porter GCE, O'Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ., Microfluid Nanofluidics 22(5), 2018
PMID: 29720926
Perspective: Surface freezing in water: A nexus of experiments and simulations.
Haji-Akbari A, Debenedetti PG., J Chem Phys 147(6), 2017
PMID: 28810776
The role of phase separation and related topography in the exceptional ice-nucleating ability of alkali feldspars.
Whale TF, Holden MA, Kulak AN, Kim YY, Meldrum FC, Christenson HK, Murray BJ., Phys Chem Chem Phys 19(46), 2017
PMID: 29139499

90 References

Daten bereitgestellt von Europe PubMed Central.

Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
Ickes L, Welti A, Hoose C, Lohmann U., Phys Chem Chem Phys 17(8), 2015
PMID: 25627933

AUTHOR UNKNOWN, 0
Space observations of cold-cloud phase change.
Choi YS, Lindzen RS, Ho CH, Kim J., Proc. Natl. Acad. Sci. U.S.A. 107(25), 2010
PMID: 20534562

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land".
Laksmono H, McQueen TA, Sellberg JA, Loh ND, Huang C, Schlesinger D, Sierra RG, Hampton CY, Nordlund D, Beye M, Martin AV, Barty A, Seibert MM, Messerschmidt M, Williams GJ, Boutet S, Amann-Winkel K, Loerting T, Pettersson LG, Bogan MJ, Nilsson A., J Phys Chem Lett 6(14), 2015
PMID: 26207172
Sensitivity of liquid clouds to homogenous freezing parameterizations.
Herbert RJ, Murray BJ, Dobbie SJ, Koop T., Geophys Res Lett 42(5), 2015
PMID: 26074652

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Entropy-driven liquid-liquid separation in supercooled water.
Holten V, Anisimov MA., Sci Rep 2(), 2012
PMID: 23056905

AUTHOR UNKNOWN, 0
Confined Water as Model of Supercooled Water.
Cerveny S, Mallamace F, Swenson J, Vogel M, Xu L., Chem. Rev. 116(13), 2016
PMID: 26940794

AUTHOR UNKNOWN, 0
Metastable liquid-liquid transition in a molecular model of water.
Palmer JC, Martelli F, Liu Y, Car R, Panagiotopoulos AZ, Debenedetti PG., Nature 510(7505), 2014
PMID: 24943954
Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature.
Sellberg JA, Huang C, McQueen TA, Loh ND, Laksmono H, Schlesinger D, Sierra RG, Nordlund D, Hampton CY, Starodub D, DePonte DP, Beye M, Chen C, Martin AV, Barty A, Wikfeldt KT, Weiss TM, Caronna C, Feldkamp J, Skinner LB, Seibert MM, Messerschmidt M, Williams GJ, Boutet S, Pettersson LG, Bogan MJ, Nilsson A., Nature 510(7505), 2014
PMID: 24943953
Viscosity of deeply supercooled water and its coupling to molecular diffusion.
Dehaoui A, Issenmann B, Caupin F., Proc. Natl. Acad. Sci. U.S.A. 112(39), 2015
PMID: 26378128
The violation of the Stokes-Einstein relation in supercooled water.
Chen SH, Mallamace F, Mou CY, Broccio M, Corsaro C, Faraone A, Liu L., Proc. Natl. Acad. Sci. U.S.A. 103(35), 2006
PMID: 16920792

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Is it cubic? Ice crystallization from deeply supercooled water.
Moore EB, Molinero V., Phys Chem Chem Phys 13(44), 2011
PMID: 22009135
Homogeneous ice nucleation from supercooled water.
Li T, Donadio D, Russo G, Galli G., Phys Chem Chem Phys 13(44), 2011
PMID: 21989826
Structure of ice crystallized from supercooled water.
Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG., Proc. Natl. Acad. Sci. U.S.A. 109(4), 2012
PMID: 22232652
Stacking disorder in ice I.
Malkin TL, Murray BJ, Salzmann CG, Molinero V, Pickering SJ, Whale TF., Phys Chem Chem Phys 17(1), 2015
PMID: 25380218
Direct calculation of ice homogeneous nucleation rate for a molecular model of water.
Haji-Akbari A, Debenedetti PG., Proc. Natl. Acad. Sci. U.S.A. 112(34), 2015
PMID: 26240318

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Diffusion in supercooled water to 300 MPa.
Prielmeier FX, Lang EW, Speedy RJ, Ludemann H., Phys. Rev. Lett. 59(10), 1987
PMID: 10035147

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Formation of glasses from liquids and biopolymers.
Angell CA., Science 267(5206), 1995
PMID: 17770101
Supercooled liquids and the glass transition.
Debenedetti PG, Stillinger FH., Nature 410(6825), 2001
PMID: 11258381

AUTHOR UNKNOWN, 0
Widom line and dynamical crossovers as routes to understand supercritical water.
Gallo P, Corradini D, Rovere M., Nat Commun 5(), 2014
PMID: 25512253
Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition.
Xu L, Kumar P, Buldyrev SV, Chen SH, Poole PH, Sciortino F, Stanley HE., Proc. Natl. Acad. Sci. U.S.A. 102(46), 2005
PMID: 16267132

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Note: Homogeneous TIP4P/2005 ice nucleation at low supercooling.
Reinhardt A, Doye JP., J Chem Phys 139(9), 2013
PMID: 24028134
Size dependence of phase transitions in aerosol nanoparticles.
Cheng Y, Su H, Koop T, Mikhailov E, Poschl U., Nat Commun 6(), 2015
PMID: 25586967
Phase diagram of supercooled water confined to hydrophilic nanopores.
Limmer DT, Chandler D., J Chem Phys 137(4), 2012
PMID: 22852633

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Nature of the anomalies in the supercooled liquid state of the mW model of water.
Holten V, Limmer DT, Molinero V, Anisimov MA., J Chem Phys 138(17), 2013
PMID: 23656138

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
Rzesanke D, Nadolny J, Duft D, Muller R, Kiselev A, Leisner T., Phys Chem Chem Phys 14(26), 2012
PMID: 22294097

AUTHOR UNKNOWN, 0
Rates of homogeneous ice nucleation in levitated H2O and D2O droplets.
Stockel P, Weidinger IM, Baumgartel H, Leisner T., J Phys Chem A 109(11), 2005
PMID: 16833556

AUTHOR UNKNOWN, 0
A microfluidic apparatus for the study of ice nucleation in supercooled water drops.
Stan CA, Schneider GF, Shevkoplyas SS, Hashimoto M, Ibanescu M, Wiley BJ, Whitesides GM., Lab Chip 9(16), 2009
PMID: 19636459

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Freezing water in no-man's land.
Manka A, Pathak H, Tanimura S, Wolk J, Strey R, Wyslouzil BE., Phys Chem Chem Phys 14(13), 2012
PMID: 22354018

AUTHOR UNKNOWN, 0
Kinetics of the homogeneous freezing of water.
Murray BJ, Broadley SL, Wilson TW, Bull SJ, Wills RH, Christenson HK, Murray EJ., Phys Chem Chem Phys 12(35), 2010
PMID: 20577704
The nucleation rate of crystalline ice in amorphous solid water.
Safarik DJ, Mullins CB., J Chem Phys 121(12), 2004
PMID: 15367028
Crystallization of amorphous water ice in the solar system.
Jenniskens P, Blake DF, Blake DF., Astrophys. J. 473(2 Pt 1), 1996
PMID: 11539415

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Liquid-like relaxation in hyperquenched water at < or = 140 K.
Kohl I, Bachmann L, Hallbrucker A, Mayer E, Loerting T., Phys Chem Chem Phys 7(17), 2005
PMID: 16240034
Competition between ices Ih and Ic in homogeneous water freezing.
Zaragoza A, Conde MM, Espinosa JR, Valeriani C, Vega C, Sanz E., J Chem Phys 143(13), 2015
PMID: 26450320
Free energy contributions and structural characterization of stacking disordered ices.
Hudait A, Qiu S, Lupi L, Molinero V., Phys Chem Chem Phys 18(14), 2016
PMID: 26983558
A study of the ice-water interface using the TIP4P/2005 water model.
Benet J, MacDowell LG, Sanz E., Phys Chem Chem Phys 16(40), 2014
PMID: 25213106

AUTHOR UNKNOWN, 0
Ice Ih-Water Interfacial Free Energy of Simple Water Models with Full Electrostatic Interactions.
Davidchack RL, Handel R, Anwar J, Brukhno AV., J Chem Theory Comput 8(7), 2012
PMID: 26588971

AUTHOR UNKNOWN, 0
Seeding approach to crystal nucleation.
Espinosa JR, Vega C, Valeriani C, Sanz E., J Chem Phys 144(3), 2016
PMID: 26801035
Homogeneous ice nucleation at moderate supercooling from molecular simulation.
Sanz E, Vega C, Espinosa JR, Caballero-Bernal R, Abascal JL, Valeriani C., J. Am. Chem. Soc. 135(40), 2013
PMID: 24010583
Freezing of heavy water (D2O) nanodroplets.
Bhabhe A, Pathak H, Wyslouzil BE., J Phys Chem A 117(26), 2013
PMID: 23763363
Extent and relevance of stacking disorder in "ice I(c)".
Kuhs WF, Sippel C, Falenty A, Hansen TC., Proc. Natl. Acad. Sci. U.S.A. 109(52), 2012
PMID: 23236184

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28799369
PubMed | Europe PMC

Suchen in

Google Scholar