Survival rate of eukaryotic cells following electrophoretic nanoinjection

Simonis M, Hübner W, Wilking A, Huser T, Hennig S (2017)
Scientific Reports 7: 41277.

Download
OA 1.15 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.
Erscheinungsjahr
Zeitschriftentitel
Scientific Reports
Band
7
Art.-Nr.
41277
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Simonis M, Hübner W, Wilking A, Huser T, Hennig S. Survival rate of eukaryotic cells following electrophoretic nanoinjection. Scientific Reports. 2017;7: 41277.
Simonis, M., Hübner, W., Wilking, A., Huser, T., & Hennig, S. (2017). Survival rate of eukaryotic cells following electrophoretic nanoinjection. Scientific Reports, 7, 41277. doi:10.1038/srep41277
Simonis, M., Hübner, W., Wilking, A., Huser, T., and Hennig, S. (2017). Survival rate of eukaryotic cells following electrophoretic nanoinjection. Scientific Reports 7:41277.
Simonis, M., et al., 2017. Survival rate of eukaryotic cells following electrophoretic nanoinjection. Scientific Reports, 7: 41277.
M. Simonis, et al., “Survival rate of eukaryotic cells following electrophoretic nanoinjection”, Scientific Reports, vol. 7, 2017, : 41277.
Simonis, M., Hübner, W., Wilking, A., Huser, T., Hennig, S.: Survival rate of eukaryotic cells following electrophoretic nanoinjection. Scientific Reports. 7, : 41277 (2017).
Simonis, Matthias, Hübner, Wolfgang, Wilking, Alice, Huser, Thomas, and Hennig, Simon. “Survival rate of eukaryotic cells following electrophoretic nanoinjection”. Scientific Reports 7 (2017): 41277.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-11-16T13:32:09Z

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

MoNa - A Cost-Efficient, Portable System for the Nanoinjection of Living Cells.
Simonis M, Sandmeyer A, Greiner J, Kaltschmidt B, Huser T, Hennig S., Sci Rep 9(1), 2019
PMID: 30940847
Manipulating and visualizing the dynamic aggregation-induced emission within a confined quartz nanopore.
Ying YL, Li YJ, Mei J, Gao R, Hu YX, Long YT, Tian H., Nat Commun 9(1), 2018
PMID: 30194303

29 References

Daten bereitgestellt von Europe PubMed Central.

Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708
Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.
Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M., Proc. Natl. Acad. Sci. U.S.A. 84(21), 1987
PMID: 2823261
Glass beads load macromolecules into living cells.
McNeil PL, Warder E., J. Cell. Sci. 88 ( Pt 5)(), 1987
PMID: 2459146
Quantitative study of electroporation-mediated molecular uptake and cell viability.
Canatella PJ, Karr JF, Petros JA, Prausnitz MR., Biophys. J. 80(2), 2001
PMID: 11159443
Live-cell protein labelling with nanometre precision by cell squeezing.
Kollmannsperger A, Sharei A, Raulf A, Heilemann M, Langer R, Jensen KF, Wieneke R, Tampe R., Nat Commun 7(), 2016
PMID: 26822409
A vector-free microfluidic platform for intracellular delivery.
Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E, Mao S, Schneider S, Han MJ, Lytton-Jean A, Basto PA, Jhunjhunwala S, Lee J, Heller DA, Kang JW, Hartoularos GC, Kim KS, Anderson DG, Langer R, Jensen KF., Proc. Natl. Acad. Sci. U.S.A. 110(6), 2013
PMID: 23341631
Massively parallel delivery of large cargo into mammalian cells with light pulses.
Wu YC, Wu TH, Clemens DL, Lee BY, Wen X, Horwitz MA, Teitell MA, Chiou PY., Nat. Methods 12(5), 2015
PMID: 25849636
Nanoblade delivery and incorporation of quantum dot conjugates into tubulin networks in live cells.
Xu J, Teslaa T, Wu TH, Chiou PY, Teitell MA, Weiss S., Nano Lett. 12(11), 2012
PMID: 23094784
Optical injection of gold nanoparticles into living cells.
Li M, Lohmuller T, Feldmann J., Nano Lett. 15(1), 2014
PMID: 25496343
A self-reconfiguring metamorphic nanoinjector for injection into mouse zygotes.
Aten QT, Jensen BD, Burnett SH, Howell LL., Rev Sci Instrum 85(5), 2014
PMID: 24880406
FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond.
Meister A, Gabi M, Behr P, Studer P, Voros J, Niedermann P, Bitterli J, Polesel-Maris J, Liley M, Heinzelmann H, Zambelli T., Nano Lett. 9(6), 2009
PMID: 19453133
In ovo nanoinjection of nonylphenol affects embryonic development of a transgenic see-through medaka (Oryzias latipes), olvas-GFP/STII-YI strain.
Hano T, Oshima Y, Kinoshita M, Tanaka M, Wakamatsu Y, Ozato K, Nassef M, Shimasaki Y, Honjo T., Chemosphere 77(11), 2009
PMID: 19853273
Comparison of waterborne and in ovo nanoinjection exposures to assess effects of PFOS on zebrafish embryos.
Li Y, Han Z, Zheng X, Ma Z, Liu H, Giesy JP, Xie Y, Yu H., Environ Sci Pollut Res Int 22(3), 2014
PMID: 25182431
Microinjecting DNA into mouse ova to study DNA replication and gene expression and to produce transgenic animals.
DePamphilis ML, Herman SA, Martinez-Salas E, Chalifour LE, Wirak DO, Cupo DY, Miranda M., BioTechniques 6(7), 1988
PMID: 3078722
Microinjection of tissue culture cells.
Graessmann M, Graessmann A., Meth. Enzymol. 101(), 1983
PMID: 6310338
Single cell assay with an automated capillary microinjection system.
Pepperkok R, Schneider C, Philipson L, Ansorge W., Exp. Cell Res. 178(2), 1988
PMID: 2458952
Xenopus oocyte microinjection: from gene to protein.
Soreq H, Seidman S., Meth. Enzymol. 207(), 1992
PMID: 1528119
Glass needle-mediated microinjection of macromolecules and transgenes into primary human blood stem/progenitor cells.
Davis BR, Yannariello-Brown J, Prokopishyn NL, Luo Z, Smith MR, Wang J, Carsrud ND, Brown DB., Blood 95(2), 2000
PMID: 10627447
Microinjection of living adherent cells by using a semi-automatic microinjection system
AUTHOR UNKNOWN, 2004
A cell nanoinjector based on carbon nanotubes.
Chen X, Kis A, Zettl A, Bertozzi CR., Proc. Natl. Acad. Sci. U.S.A. 104(20), 2007
PMID: 17485677
Multifunctional carbon-nanotube cellular endoscopes.
Singhal R, Orynbayeva Z, Kalyana Sundaram RV, Niu JJ, Bhattacharyya S, Vitol EA, Schrlau MG, Papazoglou ES, Friedman G, Gogotsi Y., Nat Nanotechnol 6(1), 2010
PMID: 21151109
The scanning ion-conductance microscope.
Hansma PK, Drake B, Marti O, Gould SA, Prater CB., Science 243(4891), 1989
PMID: 2464851
Nanopipette delivery of individual molecules to cellular compartments for single-molecule fluorescence tracking.
Bruckbauer A, James P, Zhou D, Yoon JW, Excell D, Korchev Y, Jones R, Klenerman D., Biophys. J. 93(9), 2007
PMID: 17631532
Writing with DNA and protein using a nanopipet for controlled delivery.
Bruckbauer A, Ying L, Rothery AM, Zhou D, Shevchuk AI, Abell C, Korchev YE, Klenerman D., J. Am. Chem. Soc. 124(30), 2002
PMID: 12137530
Voltage controlled nano-injection system for single-cell surgery.
Adam Seger R, Actis P, Penfold C, Maalouf M, Vilozny B, Pourmand N., Nanoscale 4(19), 2012
PMID: 22899383
Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes.
Hennig S, van de Linde S, Lummer M, Simonis M, Huser T, Sauer M., Nano Lett. 15(2), 2015
PMID: 25533766
A Fate Map for the 1st Cleavages of the Zebrafish
AUTHOR UNKNOWN, 1993
Towards better scanning near-field optical microscopy probes--progress and new developments.
Heinzelmann H, Freyland JM, Eckert R, Huser T, Schurmann G, Noell W, Staufer U, De Rooij NF., J Microsc 194(Pt 2-3), 1999
PMID: 11388268

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28120926
PubMed | Europe PMC

Suchen in

Google Scholar