On the relationship between slow cortical potentials and BOLD signal changes in humans

Khader P, Schicke T, Röder B, Rösler F (2007)
International Journal of Psychophysiology 67(3): 252-261.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Restricted Khader - 2008 - On the relationship between slow cortical potentials and BOLD signal changes in.pdf Request a Copy
Autor*in
Khader, Patrick; Schicke, TobiasUniBi ; Röder, Brigitte; Rösler, Frank
Erscheinungsjahr
2007
Zeitschriftentitel
International Journal of Psychophysiology
Band
67
Ausgabe
3
Seite(n)
252-261
ISSN
0167-8760
Page URI
https://pub.uni-bielefeld.de/record/2908173

Zitieren

Khader P, Schicke T, Röder B, Rösler F. On the relationship between slow cortical potentials and BOLD signal changes in humans. International Journal of Psychophysiology. 2007;67(3):252-261.
Khader, P., Schicke, T., Röder, B., & Rösler, F. (2007). On the relationship between slow cortical potentials and BOLD signal changes in humans. International Journal of Psychophysiology, 67(3), 252-261. doi:10.1016/j.ijpsycho.2007.05.018
Khader, Patrick, Schicke, Tobias, Röder, Brigitte, and Rösler, Frank. 2007. “On the relationship between slow cortical potentials and BOLD signal changes in humans”. International Journal of Psychophysiology 67 (3): 252-261.
Khader, P., Schicke, T., Röder, B., and Rösler, F. (2007). On the relationship between slow cortical potentials and BOLD signal changes in humans. International Journal of Psychophysiology 67, 252-261.
Khader, P., et al., 2007. On the relationship between slow cortical potentials and BOLD signal changes in humans. International Journal of Psychophysiology, 67(3), p 252-261.
P. Khader, et al., “On the relationship between slow cortical potentials and BOLD signal changes in humans”, International Journal of Psychophysiology, vol. 67, 2007, pp. 252-261.
Khader, P., Schicke, T., Röder, B., Rösler, F.: On the relationship between slow cortical potentials and BOLD signal changes in humans. International Journal of Psychophysiology. 67, 252-261 (2007).
Khader, Patrick, Schicke, Tobias, Röder, Brigitte, and Rösler, Frank. “On the relationship between slow cortical potentials and BOLD signal changes in humans”. International Journal of Psychophysiology 67.3 (2007): 252-261.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Name
Khader - 2008 - On the relationship between slow cortical potentials and BOLD signal changes in.pdf Request a Copy
Access Level
Restricted Request a Copy
Zuletzt Hochgeladen
2019-09-06T07:36:59Z
MD5 Prüfsumme
6fe409ef7ac6ac715c16630349402760


Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

44 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Higher similarity in beta topography between tasks than subjects.
Basile LFH, Sato JR, Pasquini HA, Velasques B, Ribeiro P, Anghinah R., Brain Struct Funct 223(4), 2018
PMID: 29185109
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics.
Lamoš M, Mareček R, Slavíček T, Mikl M, Rektor I, Jan J., J Neural Eng 15(3), 2018
PMID: 29536946
Origin of slow spontaneous resting-state neuronal fluctuations in brain networks.
Krishnan GP, González OC, Bazhenov M., Proc Natl Acad Sci U S A 115(26), 2018
PMID: 29884650
Quasi-Periodic Patterns of Neural Activity improve Classification of Alzheimer's Disease in Mice.
Belloy ME, Shah D, Abbas A, Kashyap A, Roßner S, Van der Linden A, Keilholz SD, Keliris GA, Verhoye M., Sci Rep 8(1), 2018
PMID: 29968786
Infraslow Electroencephalographic and Dynamic Resting State Network Activity.
Grooms JK, Thompson GJ, Pan WJ, Billings J, Schumacher EH, Epstein CM, Keilholz SD., Brain Connect 7(5), 2017
PMID: 28462586
Ongoing Slow Fluctuations in V1 Impact on Visual Perception.
Wohlschläger AM, Glim S, Shao J, Draheim J, Köhler L, Lourenço S, Riedl V, Sorg C., Front Hum Neurosci 10(), 2016
PMID: 27601986
Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity.
Ponce-Alvarez A, Deco G, Hagmann P, Romani GL, Mantini D, Corbetta M., PLoS Comput Biol 11(2), 2015
PMID: 25692996
Inferior parietal and right frontal contributions to trial-by-trial adaptations of attention to memory.
Kizilirmak JM, Rösler F, Bien S, Khader PH., Brain Res 1614(), 2015
PMID: 25892601
The restless brain: how intrinsic activity organizes brain function.
Raichle ME., Philos Trans R Soc Lond B Biol Sci 370(1668), 2015
PMID: 25823869
Individual topographic variability is inherent to cortical physiology but task-related differences may be noise.
Basile LF, Sato JR, Pasquini HA, Lozano MD, Nucci MP, Velasques B, Ribeiro P, Ramos RT, Anghinah R., PLoS One 10(5), 2015
PMID: 26010428
EEG-fMRI integration for the study of human brain function.
Jorge J, van der Zwaag W, Figueiredo P., Neuroimage 102 Pt 1(), 2014
PMID: 23732883
Low-dimensional dynamics of resting-state cortical activity.
Mehrkanoon S, Breakspear M, Boonstra TW., Brain Topogr 27(3), 2014
PMID: 24104726
Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI.
Hiltunen T, Kantola J, Abou Elseoud A, Lepola P, Suominen K, Starck T, Nikkinen J, Remes J, Tervonen O, Palva S, Kiviniemi V, Palva JM., J Neurosci 34(2), 2014
PMID: 24403137
Deep brain stimulation: are astrocytes a key driver behind the scene?
Fenoy AJ, Goetz L, Chabardès S, Xia Y., CNS Neurosci Ther 20(3), 2014
PMID: 24456263
Monochromatic ultra-slow (~0.1 Hz) oscillations in the human electroencephalogram and their relation to hemodynamics.
Nikulin VV, Fedele T, Mehnert J, Lipp A, Noack C, Steinbrink J, Curio G., Neuroimage 97(), 2014
PMID: 24732648
Multimodal imaging reveals the spatiotemporal dynamics of recollection.
Bergström ZM, Henson RN, Taylor JR, Simons JS., Neuroimage 68(), 2013
PMID: 23201363
Infraslow LFP correlates to resting-state fMRI BOLD signals.
Pan WJ, Thompson GJ, Magnuson ME, Jaeger D, Keilholz S., Neuroimage 74(), 2013
PMID: 23481462
The contribution of electrophysiology to functional connectivity mapping.
Schölvinck ML, Leopold DA, Brookes MJ, Khader PH., Neuroimage 80(), 2013
PMID: 23587686
Control processes during selective long-term memory retrieval.
Kızılırmak JM, Rösler F, Khader PH., Neuroimage 59(2), 2012
PMID: 21884804
Default mode network activity and connectivity in psychopathology.
Whitfield-Gabrieli S, Ford JM., Annu Rev Clin Psychol 8(), 2012
PMID: 22224834
The advantage of mentally rotating clockwise.
Liesefeld HR, Zimmer HD., Brain Cogn 75(2), 2011
PMID: 21111522
Slow intrinsic oscillations in thick neocortical slices of hypoxia tolerant deep diving seals.
Ramirez JM, Folkow LP, Ludvigsen S, Ramirez PN, Blix AS., Neuroscience 177(), 2011
PMID: 21185914
Frontal and parietal contributions to arithmetic fact retrieval: a parametric analysis of the problem-size effect.
Jost K, Khader PH, Burke M, Bien S, Rösler F., Hum Brain Mapp 32(1), 2011
PMID: 20336690
The restless brain.
Raichle ME., Brain Connect 1(1), 2011
PMID: 22432951
Large-scale calcium waves traveling through astrocytic networks in vivo.
Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y., J Neurosci 31(7), 2011
PMID: 21325528
Electrophysiological markers of genetic risk for attention deficit hyperactivity disorder.
Tye C, McLoughlin G, Kuntsi J, Asherson P., Expert Rev Mol Med 13(), 2011
PMID: 21426626
Electrophysiological signature of working and long-term memory interaction in the human hippocampus.
Axmacher N, Lenz S, Haupt S, Elger CE, Fell J., Eur J Neurosci 31(1), 2010
PMID: 20092564
Two views of brain function.
Raichle ME., Trends Cogn Sci 14(4), 2010
PMID: 20206576
The temporal structures and functional significance of scale-free brain activity.
He BJ, Zempel JM, Snyder AZ, Raichle ME., Neuron 66(3), 2010
PMID: 20471349
Windows on the human body--in vivo high-field magnetic resonance research and applications in medicine and psychology.
Moser E, Meyerspeer M, Fischmeister FP, Grabner G, Bauer H, Trattnig S., Sensors (Basel) 10(6), 2010
PMID: 22219684
Exploring the electrophysiological correlates of the default-mode network with intracerebral EEG.
Jerbi K, Vidal JR, Ossandon T, Dalal SS, Jung J, Hoffmann D, Minotti L, Bertrand O, Kahane P, Lachaux JP., Front Syst Neurosci 4(), 2010
PMID: 20661461
The fMRI signal, slow cortical potential and consciousness.
He BJ, Raichle ME., Trends Cogn Sci 13(7), 2009
PMID: 19535283
Simultaneous recording of EEG and BOLD responses: a historical perspective.
Herrmann CS, Debener S., Int J Psychophysiol 67(3), 2008
PMID: 17719112
Electrophysiological correlates of the brain's intrinsic large-scale functional architecture.
He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME., Proc Natl Acad Sci U S A 105(41), 2008
PMID: 18843113

62 References

Daten bereitgestellt von Europe PubMed Central.

How well do we understand the neural origins of the fMRI BOLD signal?
Arthurs OJ, Boniface S., Trends Neurosci. 25(1), 2002
PMID: 11801335
Technical requirements for high-quality scalp DC recordings.
Bauer H, Korunka C, Leodolter M., Electroencephalogr Clin Neurophysiol 72(6), 1989
PMID: 2471624
Slow potentials of the cerebral cortex and behavior.
Birbaumer N, Elbert T, Canavan AG, Rockstroh B., Physiol. Rev. 70(1), 1990
PMID: 2404287
The thought translation device (TTD) for completely paralyzed patients.
Birbaumer N, Kubler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H., IEEE Trans Rehabil Eng 8(2), 2000
PMID: 10896183

Braitenberg, 1991
Can subcortical structures generate potentials large in amplitude?
Braun, 1990
GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex.
Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A, Singh KD, Holliday IE, Francis ST, Morris PG., Neuroimage 26(1), 2005
PMID: 15862231
Slow potentials in anticipatory behavior
Brunia, J. Psychophysiol. 18(), 2004

AUTHOR UNKNOWN, 0
Electrogenesis of cortical DC potentials.
Caspers H, Speckmann EJ, Lehmenkuhler A., Prog. Brain Res. 54(), 1980
PMID: 7220930
Precentral potential shifts related to motor preparation and stimulus anticipation: a replication
Damen, 1987
Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring.
Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK., J. Neurosci. 25(50), 2005
PMID: 16354931
Single-trial EEG-fMRI reveals the dynamics of cognitive function.
Debener S, Ullsperger M, Siegel M, Engel AK., Trends Cogn. Sci. (Regul. Ed.) 10(12), 2006
PMID: 17074530
Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI.
Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K., Proc. Natl. Acad. Sci. U.S.A. 102(49), 2005
PMID: 16314575
Slow cortical potentials reflect the regulation of cortical excitability
Elbert, 1993
Late frontal brain potentials distinguish true and false recognition
Goldmann, Neuro Report 14(), 2003
Endogenous brain potentials associated with selective auditory attention.
Hansen JC, Hillyard SA., Electroencephalogr Clin Neurophysiol 49(3-4), 1980
PMID: 6158404
Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?
Heeger DJ, Huk AC, Geisler WS, Albrecht DG., Nat. Neurosci. 3(7), 2000
PMID: 10862687
Contributions of potassium currents and glia to slow potential shifts, SPSs
Heinemann, 1998
A correction method for DC drift artifacts.
Hennighausen E, Heil M, Rosler F., Electroencephalogr Clin Neurophysiol 86(3), 1993
PMID: 7680996
Brain areas activated in fMRI during self-regulation of slow cortical potentials (SCPs).
Hinterberger T, Veit R, Strehl U, Trevorrow T, Erb M, Kotchoubey B, Flor H, Birbaumer N., Exp Brain Res 152(1), 2003
PMID: 12830347
Neuronal mechanisms underlying control of a brain-computer interface.
Hinterberger T, Veit R, Wilhelm B, Weiskopf N, Vatine JJ, Birbaumer N., Eur. J. Neurosci. 21(11), 2005
PMID: 15978025
Facts, rules, and strategies in single-digit multiplication: evidence from event-related brain potentials.
Jost K, Beinhoff U, Hennighausen E, Rosler F., Brain Res Cogn Brain Res 20(2), 2004
PMID: 15183390
Content-specific activation during associative long-term memory retrieval.
Khader P, Burke M, Bien S, Ranganath C, Rosler F., Neuroimage 27(4), 2005
PMID: 15964209
Topography and dynamics of associative long-term memory retrieval in humans.
Khader P, Knoth K, Burke M, Ranganath C, Bien S, Rosler F., J Cogn Neurosci 19(3), 2007
PMID: 17335397

AUTHOR UNKNOWN, 0
Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotentiale und Reafferente Potentiale
Kornhuber, Pflügers Arch. Gesamte Physiol. Menschen Tiere 284(), 1965
Slow negative potential shifts in a verbal concept formation task
Lang, 1987
DC-potential shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning.
Lang W, Lang M, Podreka I, Steiner M, Uhl F, Suess E, Muller C, Deecke L., Exp Brain Res 71(2), 1988
PMID: 3262531
EEG-correlated fMRI of human alpha activity.
Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K., Neuroimage 19(4), 2003
PMID: 12948703
Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging.
Leopold DA, Murayama Y, Logothetis NK., Cereb. Cortex 13(4), 2003
PMID: 12631571
Preparing for action: Inferences from CNV and LRP
Leuthold, J. Psychophysiol. 18(), 2004
Slow postsynaptic actions in ganglionic functions
Libet, 1979
Interpreting the BOLD signal.
Logothetis NK, Wandell BA., Annu. Rev. Physiol. 66(), 2004
PMID: 14977420
Neurophysiological investigation of the basis of the fMRI signal.
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A., Nature 412(6843), 2001
PMID: 11449264
Neurochemical interpretation of cortical slow potentials as they relate to cognitive processes and a parsimonious model of mammalian brain
Marczynski, 1993

McCallum, 1993
Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy.
Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A., Neuroimage 20(1), 2003
PMID: 14527577
Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex.
Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R., Science 309(5736), 2005
PMID: 16081741
Brain activity relating to the contingent negative variation: an fMRI investigation.
Nagai Y, Critchley HD, Featherstone E, Fenwick PB, Trimble MR, Dolan RJ., Neuroimage 21(4), 2004
PMID: 15050551
Hemodynamic signals correlate tightly with synchronized gamma oscillations.
Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA., Science 309(5736), 2005
PMID: 16081740
Brain activity before an event predicts later recollection.
Otten LJ, Quayle AH, Akram S, Ditewig TA, Rugg MD., Nat. Neurosci. 9(4), 2006
PMID: 16501566
Review of methods for solving the EEG inverse problem
Pascual-Marqui, Int. J. Bioelectromagn. 1(), 1999
Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain.
Pascual-Marqui RD, Michel CM, Lehmann D., Int J Psychophysiol 18(1), 1994
PMID: 7876038

Rugg, 1995
Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects.
Roder B, Rosler F, Hennighausen E, Nacker F., Brain Res Cogn Brain Res 4(2), 1996
PMID: 8883921
Patterns of cerebral activation while mental images are rotated and changed in size.
Rosler F, Heil M, Bajric J, Pauls AC, Hennighausen E., Psychophysiology 32(2), 1995
PMID: 7630978
Slow negative brain potentials as reflections of specific modular resources of cognition.
Rosler F, Heil M, Roder B., Biol Psychol 45(1-3), 1997
PMID: 9083647
Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload.
Sammer G, Blecker C, Gebhardt H, Bischoff M, Stark R, Morgen K, Vaitl D., Hum Brain Mapp 28(8), 2007
PMID: 17080437
Tight covariation of BOLD signal changes and slow ERPs in the parietal cortex in a parametric spatial imagery task with haptic acquisition.
Schicke T, Muckli L, Beer AL, Wibral M, Singer W, Goebel R, Rosler F, Roder B., Eur. J. Neurosci. 23(7), 2006
PMID: 16623847
Introduction to the Neurophysiological basis of the EEG and DC Potentials
Speckmann, 1999
Neuronal mechanisms underlying the generation of field potentials
Speckmann, 1984
Evaluation of commercially available electrodes and gels for recording of slow EEG potentials.
Tallgren P, Vanhatalo S, Kaila K, Voipio J., Clin Neurophysiol 116(4), 2004
PMID: 15792889
Cortical measures of anticipation
van, J. Psychophysiol. 18(), 2004
Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator.
Voipio J, Tallgren P, Heinonen E, Vanhatalo S, Kaila K., J. Neurophysiol. 89(4), 2002
PMID: 12612037
CONTINGENT NEGATIVE VARIATION: AN ELECTRIC SIGN OF SENSORIMOTOR ASSOCIATION AND EXPECTANCY IN THE HUMAN BRAIN.
WALTER WG, COOPER R, ALDRIDGE VJ, MCCALLUM WC, WINTER AL., Nature 203(), 1964
PMID: 14197376
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17669531
PubMed | Europe PMC

Suchen in

Google Scholar