Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance

Clayton J, Qi M, Godt A, Goldfarb D, Han S, Sherwin M (2017)
Physical Chemistry Chemical Physics 19(7): 5127-5136.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Clayton, Jessica; Qi, MianUniBi ; Godt, AdelheidUniBi; Goldfarb, Daniella; Han, Songi; Sherwin, Mark
Erscheinungsjahr
2017
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
19
Ausgabe
7
Seite(n)
5127-5136
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2908104

Zitieren

Clayton J, Qi M, Godt A, Goldfarb D, Han S, Sherwin M. Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Physical Chemistry Chemical Physics. 2017;19(7):5127-5136.
Clayton, J., Qi, M., Godt, A., Goldfarb, D., Han, S., & Sherwin, M. (2017). Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Physical Chemistry Chemical Physics, 19(7), 5127-5136. doi:10.1039/c6cp07119h
Clayton, Jessica, Qi, Mian, Godt, Adelheid, Goldfarb, Daniella, Han, Songi, and Sherwin, Mark. 2017. “Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance”. Physical Chemistry Chemical Physics 19 (7): 5127-5136.
Clayton, J., Qi, M., Godt, A., Goldfarb, D., Han, S., and Sherwin, M. (2017). Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Physical Chemistry Chemical Physics 19, 5127-5136.
Clayton, J., et al., 2017. Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Physical Chemistry Chemical Physics, 19(7), p 5127-5136.
J. Clayton, et al., “Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance”, Physical Chemistry Chemical Physics, vol. 19, 2017, pp. 5127-5136.
Clayton, J., Qi, M., Godt, A., Goldfarb, D., Han, S., Sherwin, M.: Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Physical Chemistry Chemical Physics. 19, 5127-5136 (2017).
Clayton, Jessica, Qi, Mian, Godt, Adelheid, Goldfarb, Daniella, Han, Songi, and Sherwin, Mark. “Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance”. Physical Chemistry Chemical Physics 19.7 (2017): 5127-5136.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Gd(III)-Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination.
Azarkh M, Bieber A, Qi M, Fischer JWA, Yulikov M, Godt A, Drescher M., J Phys Chem Lett 10(7), 2019
PMID: 30864799
Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes.
Clayton JA, Keller K, Qi M, Wegner J, Koch V, Hintz H, Godt A, Han S, Jeschke G, Sherwin MS, Yulikov M., Phys Chem Chem Phys 20(15), 2018
PMID: 29617015
Multi-step phase-cycling in a free-electron laser-powered pulsed electron paramagnetic resonance spectrometer.
Wilson CB, Aronson S, Clayton JA, Glaser SJ, Han S, Sherwin MS., Phys Chem Chem Phys 20(26), 2018
PMID: 29938285
Photonic band-gap resonators for high-field/high-frequency EPR of microliter-volume liquid aqueous samples.
Milikisiyants S, Nevzorov AA, Smirnov AI., J Magn Reson 296(), 2018
PMID: 30268940
Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization.
Kaushik M, Qi M, Godt A, Corzilius B., Angew Chem Int Ed Engl 56(15), 2017
PMID: 28319293
Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels.
Keller K, Mertens V, Qi M, Nalepa AI, Godt A, Savitsky A, Jeschke G, Yulikov M., Phys Chem Chem Phys 19(27), 2017
PMID: 28660955
Time domain simulation of Gd3+-Gd3+ distance measurements by EPR.
Manukovsky N, Feintuch A, Kuprov I, Goldfarb D., J Chem Phys 147(4), 2017
PMID: 28764344

75 References

Daten bereitgestellt von Europe PubMed Central.


Hemminga MA, Berliner LJ., 2007
Spin-labeled biomolecules.
Stone TJ, Buckman T, Nordio PL, McConnell HM., Proc. Natl. Acad. Sci. U.S.A. 54(4), 1965
PMID: 5219813

Hubbell WL, Altenbach C., 1994

Hustedt EJ, Beth AH., 1999
Identifying conformational changes with site-directed spin labeling.
Hubbell WL, Cafiso DS, Altenbach C., Nat. Struct. Biol. 7(9), 2000
PMID: 10966640
Electron spin resonance in studies of membranes and proteins.
Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH., Science 291(5502), 2001
PMID: 11253218

Shelke SA, Sigurdsson ST., 2011
Long-range distance determinations in biomacromolecules by EPR spectroscopy.
Schiemann O, Prisner TF., Q. Rev. Biophys. 40(1), 2007
PMID: 17565764

Tsvetkov YD, Milov A, Maryasov A., 2008

Rabenstein MD, Shin YK., 1995
Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure.
Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson G, Wollmer A., Biophys. J. 73(6), 1997
PMID: 9414239
Recent advances in site-directed spin labeling of proteins.
Hubbell WL, Gross A, Langen R, Lietzow MA., Curr. Opin. Struct. Biol. 8(5), 1998
PMID: 9818271
Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides.
Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJ, Rodgers CT, Jeschke G, Timmel CR., J. Magn. Reson. 191(2), 2007
PMID: 18280189

Borbat PP, Freed JH., 2014

Reginsson GW, Kunjir NC, Sigurdsson ST, Schiemann O., 2012
Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR.
Kunjir NC, Reginsson GW, Schiemann O, Sigurdsson ST., Phys Chem Chem Phys 15(45), 2013
PMID: 24135783
Physiological-temperature distance measurement in nucleic acid using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy.
Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Rogozhnikova OY, Trukhin DV, Troitskaya TI, Tormyshev VM, Fedin MV, Pyshnyi DV, Bagryanskaya EG., J. Am. Chem. Soc. 136(28), 2014
PMID: 24963806

Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Trukhin DV, Rogozhnikova OY, Tormyshev VM, Pyshnyi DV, Fedin MV, Bagryanskaya EG., 2015
Pulsed EPR dipolar spectroscopy at Q- and G-band on a trityl biradical.
Akhmetzyanov D, Schops P, Marko A, Kunjir NC, Sigurdsson ST, Prisner TF., Phys Chem Chem Phys 17(37), 2015
PMID: 26339694

Schweiger A, Jeschke G., 2001
High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies.
Polyhach Y, Bordignon E, Tschaggelar R, Gandra S, Godt A, Jeschke G., Phys Chem Chem Phys 14(30), 2012
PMID: 22751953
HYSCORE and DEER with an upgraded 95GHz pulse EPR spectrometer.
Goldfarb D, Lipkin Y, Potapov A, Gorodetsky Y, Epel B, Raitsimring AM, Radoul M, Kaminker I., J. Magn. Reson. 194(1), 2008
PMID: 18571956
A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time.
Cruickshank PA, Bolton DR, Robertson DA, Hunter RI, Wylde RJ, Smith GM., Rev Sci Instrum 80(10), 2009
PMID: 19895049

Smith GM, Lesurf JCG, Mitchell RH, Riedi PC., 1998

Tkach I, Halbmair K, Höbartner C, Bennati M., 2014
Pulsed 180-GHz EPR/ENDOR/PELDOR spectroscopy.
Hertel MM, Denysenkov VP, Bennati M, Prisner TF., Magn Reson Chem 43 Spec no.(), 2005
PMID: 16235223

Denysenkov VP, Prisner TF, Stubbe J, Bennati M., 2005
230/115 GHz Electron Paramagnetic Resonance/Double Electron-Electron Resonance Spectroscopy.
Cho FH, Stepanov V, Abeywardana C, Takahashi S., Meth. Enzymol. 563(), 2015
PMID: 26478483

Stepanov V, Takahashi S., 2016

Razzaghi S, Qi M, Nalepa AI, Godt A, Jeschke G, Savitsky A, Yulikov M., 2014
W-Band pulse EPR distance measurements in peptides using Gd(3+)-dipicolinic acid derivatives as spin labels.
Gordon-Grossman M, Kaminker I, Gofman Y, Shai Y, Goldfarb D., Phys Chem Chem Phys 13(22), 2011
PMID: 21552622
Orthogonal spin labeling and Gd(III)-nitroxide distance measurements on bacteriophage T4-lysozyme.
Garbuio L, Bordignon E, Brooks EK, Hubbell WL, Jeschke G, Yulikov M., J Phys Chem B 117(11), 2013
PMID: 23442004

Matalon E, Huber T, Hagelueken G, Graham B, Frydman V, Feintuch A, Otting G, Goldfarb D., 2013

Manukovsky N, Frydman V, Goldfarb D., 2015
Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers.
Song Y, Meade TJ, Astashkin AV, Klein EL, Enemark JH, Raitsimring A., J. Magn. Reson. 210(1), 2011
PMID: 21388847
Nanometer-scale distance measurements in proteins using Gd3+ spin labeling.
Potapov A, Yagi H, Huber T, Jergic S, Dixon NE, Otting G, Goldfarb D., J. Am. Chem. Soc. 132(26), 2010
PMID: 20536233
Gadolinium tagging for high-precision measurements of 6 nm distances in protein assemblies by EPR.
Yagi H, Banerjee D, Graham B, Huber T, Goldfarb D, Otting G., J. Am. Chem. Soc. 133(27), 2011
PMID: 21661728
Gd(III)-PyMTA label is suitable for in-cell EPR.
Qi M, Gross A, Jeschke G, Godt A, Drescher M., J. Am. Chem. Soc. 136(43), 2014
PMID: 25325832
Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling.
Martorana A, Bellapadrona G, Feintuch A, Di Gregorio E, Aime S, Goldfarb D., J. Am. Chem. Soc. 136(38), 2014
PMID: 25163412
Structural disorder of monomeric α-synuclein persists in mammalian cells.
Theillet FX, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P., Nature 530(7588), 2016
PMID: 26808899
Using Genetically Encodable Self-Assembling Gd(III) Spin Labels To Make In-Cell Nanometric Distance Measurements.
Mascali FC, Ching HY, Rasia RM, Un S, Tabares LC., Angew. Chem. Int. Ed. Engl. 55(37), 2016
PMID: 27496179

Raitsimring AM, Astashkin AV, Poluektov OG, Caravan P., 2005

Goldfarb D., 2014
Extending the distance range accessed with continuous wave EPR with Gd3+ spin probes at high magnetic fields.
Edwards DT, Ma Z, Meade TJ, Goldfarb D, Han S, Sherwin MS., Phys Chem Chem Phys 15(27), 2013
PMID: 23732863
Gd(III)-Gd(III) EPR distance measurements--the range of accessible distances and the impact of zero field splitting.
Dalaloyan A, Qi M, Ruthstein S, Vega S, Godt A, Feintuch A, Goldfarb D., Phys Chem Chem Phys 17(28), 2015
PMID: 26108866
Overcoming artificial broadening in Gd(3+)-Gd(3+) distance distributions arising from dipolar pseudo-secular terms in DEER experiments.
Cohen MR, Frydman V, Milko P, Iron MA, Abdelkader EH, Lee MD, Swarbrick JD, Raitsimring A, Otting G, Graham B, Feintuch A, Goldfarb D., Phys Chem Chem Phys 18(18), 2016
PMID: 27102158
Flexibility of shape-persistent molecular building blocks composed of p-phenylene and ethynylene units.
Jeschke G, Sajid M, Schulte M, Ramezanian N, Volkov A, Zimmermann H, Godt A., J. Am. Chem. Soc. 132(29), 2010
PMID: 20590116
The protein-solvent glass transition.
Doster W., Biochim. Biophys. Acta 1804(1), 2009
PMID: 19577666

Gateau C, Mazzanti M, Pécaut J, Dunand FA, Helm L., 2003
Room-temperature distance measurements of immobilized spin-labeled protein by DEER/PELDOR.
Meyer V, Swanson MA, Clouston LJ, Boratynski PJ, Stein RA, Mchaourab HS, Rajca A, Eaton SS, Eaton GR., Biophys. J. 108(5), 2015
PMID: 25762332
Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.
Takahashi S, Brunel LC, Edwards DT, van Tol J, Ramian G, Han S, Sherwin MS., Nature 489(7416), 2012
PMID: 22996555
Phase cycling with a 240 GHz, free electron laser-powered electron paramagnetic resonance spectrometer.
Edwards DT, Zhang Y, Glaser SJ, Han S, Sherwin MS., Phys Chem Chem Phys 15(15), 2013
PMID: 23474874

Eaton GR, Eaton SS, Barr DP, Weber RT., 2010
Investigation of biological systems by high resolution 2-mm wave band ESR.
Krinichnyi VI., J. Biochem. Biophys. Methods 23(1), 1991
PMID: 1655857

Auteri F, Beth A, Robinson B., 1988

Taylor JR., 1997

Godt A, Schulte M, Zimmermann H, Jeschke G., 2006
Gd(III)-Gd(III) distance measurements with chirp pump pulses.
Doll A, Qi M, Wili N, Pribitzer S, Godt A, Jeschke G., J. Magn. Reson. 259(), 2015
PMID: 26340436

Abragam A, Bleaney B., 1970
Variable temperature and EPR frequency study of two aqueous Gd(III) complexes with unprecedented sharp lines.
Borel A, Kang H, Gateau C, Mazzanti M, Clarkson RB, Belford RL., J Phys Chem A 110(45), 2006
PMID: 17091946

Gonzalez JAT, Longinotti MP, Corti HR., 2011
The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
Simperler A, Kornherr A, Chopra R, Jones W, Motherwell WD, Zifferer G., Carbohydr. Res. 342(11), 2007
PMID: 17511976

Lynch WB, Earle KA, Freed JH., 1988

Barra AL, Brljnel LC, Robert JB., 1990

Earle KA, Tipikin DS, Freed JH., 1996
High-Frequency and -Field Electron Paramagnetic Resonance of High-Spin Manganese(III) in Porphyrinic Complexes.
Krzystek J, Telser J, Pardi LA, Goldberg DP, Hoffman BM, Brunel LC., Inorg Chem 38(26), 1999
PMID: 11671322
Ultrawide band multifrequency high-field EMR technique: A methodology for increasing spectroscopic information.
Hassan AK, Pardi LA, Krzystek J, Sienkiewicz A, Goy P, Rohrer M, Brunel LC., J. Magn. Reson. 142(2), 2000
PMID: 10648147
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28139788
PubMed | Europe PMC

Suchen in

Google Scholar