Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of beta-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin

Taniguchi H, Henke NA, Heider S, Wendisch VF (2017)
Metabolic Engineering Communications 4: 1-11.

Download
OA 1.11 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Corynebacterium glutamicum shows yellow pigmentation due to biosynthesis of the C50 carotenoid decaprenoxanthin and its glycosides. This bacterium has been engineered for production of various non-native cyclic C40 and C50 carotenoids such as β-carotene, astaxanthin or sarcinaxanthin. In this study, the effect of modulating gene expression more broadly by overexpression of sigma factor genes on carotenoid production by C. glutamicum was characterized. Overexpression of the primary sigma factor gene sigA improved lycopene production by recombinant C. glutamicum up to 8-fold. In C. glutamicum wild type, overexpression of sigA led to 2-fold increased accumulation of the native carotenoid decaprenoxanthin in the stationary growth phase. Under these conditions, genes related to thiamine synthesis and aromatic compound degradation showed increased RNA levels and addition of thiamine and the aromatic iron chelator protocatechuic acid to the culture medium enhanced carotenoid production when sigA was overexpressed. Deletion of the gene for the alternative sigma factor SigB, which is expected to replace SigA in RNA polymerase holoenzymes during transition to the stationary growth phase, also increased carotenoid production. The strategy of sigA overexpression could be successfully transferred to production of the non-native carotenoids β-carotene and bisanhydrobacterioruberin (BABR). Production of the latter is the first demonstration that C. glutamicum may accumulate a non-native linear C50 carotenoid instead of the native cyclic C50 carotenoid decaprenoxanthin.
Erscheinungsjahr
Zeitschriftentitel
Metabolic Engineering Communications
Band
4
Seite(n)
1-11
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Taniguchi H, Henke NA, Heider S, Wendisch VF. Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of beta-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metabolic Engineering Communications. 2017;4:1-11.
Taniguchi, H., Henke, N. A., Heider, S., & Wendisch, V. F. (2017). Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of beta-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metabolic Engineering Communications, 4, 1-11. doi:10.1016/j.meteno.2017.01.001
Taniguchi, H., Henke, N. A., Heider, S., and Wendisch, V. F. (2017). Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of beta-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metabolic Engineering Communications 4, 1-11.
Taniguchi, H., et al., 2017. Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of beta-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metabolic Engineering Communications, 4, p 1-11.
H. Taniguchi, et al., “Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of beta-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin”, Metabolic Engineering Communications, vol. 4, 2017, pp. 1-11.
Taniguchi, H., Henke, N.A., Heider, S., Wendisch, V.F.: Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of beta-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metabolic Engineering Communications. 4, 1-11 (2017).
Taniguchi, Hironori, Henke, Nadja Alina, Heider, Sabine, and Wendisch, Volker F. “Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of beta-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin”. Metabolic Engineering Communications 4 (2017): 1-11.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-11-17T16:17:58Z

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Challenges and tackles in metabolic engineering for microbial production of carotenoids.
Wang C, Zhao S, Shao X, Park JB, Jeong SH, Park HJ, Kwak WJ, Wei G, Kim SW., Microb Cell Fact 18(1), 2019
PMID: 30885243
Identifying the Growth Modulon of Corynebacterium glutamicum.
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R., Front Microbiol 10(), 2019
PMID: 31134020
Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Wichmann J, Baier T, Frohwitter J, Lauersen KJ, Risse JM, Peters-Wendisch P, Kruse O, Wendisch VF., Genes (Basel) 9(4), 2018
PMID: 29673223
Activation of microbial secondary metabolic pathways: Avenues and challenges.
Baral B, Akhgari A, Metsä-Ketelä M., Synth Syst Biotechnol 3(3), 2018
PMID: 30345402

69 References

Daten bereitgestellt von Europe PubMed Central.

Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern.
Abbes M, Baati H, Guermazi S, Messina C, Santulli A, Gharsallah N, Ammar E., BMC Complement Altern Med 13(), 2013
PMID: 24090008
Commercial opportunities for carotenoid production by biotechnology
Ausich R.L.., 2009
Thiamin biosynthesis in prokaryotes.
Begley TP, Downs DM, Ealick SE, McLafferty FW, Van Loon AP, Taylor S, Campobasso N, Chiu HJ, Kinsland C, Reddick JJ, Xi J., Arch. Microbiol. 171(5), 1999
PMID: 10382260
Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite
Bongers M., Chrysanthopoulos P.K., Behrendorff J.B.Y.H., Hodson M.P., Vickers C.E., Nielsen L.K.., 2015

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Current development in isoprenoid precursor biosynthesis and regulation.
Chang WC, Song H, Liu HW, Liu P., Curr Opin Chem Biol 17(4), 2013
PMID: 23891475
EMMA 2 – a MAGE-compliant system for the collaborative analysis and integration of microarray data
Dondrup M., Albaum S.P., Griebel T., Henckel K., Jünemann S., Kahlke T., Kleindt C.K., Küster H., Linke B., Mertens D., Mittard-Runte V., Neuweger H., Runte K.J., Tauch A., Tille F., Pühler A., Goesmann A.., 2009

Eggeling L., Bott M.., 2005
Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation.
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H., Appl. Environ. Microbiol. 74(16), 2008
PMID: 18567683
1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants.
Estevez JM, Cantero A, Reindl A, Reichler S, Leon P., J. Biol. Chem. 276(25), 2001
PMID: 11264287
Bacterial sigma factors: a historical, structural, and genomic perspective.
Feklistov A, Sharon BD, Darst SA, Gross CA., Annu. Rev. Microbiol. 68(), 2014
PMID: 25002089
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis.
Grawert T, Kaiser J, Zepeck F, Laupitz R, Hecht S, Amslinger S, Schramek N, Schleicher E, Weber S, Haslbeck M, Buchner J, Rieder C, Arigoni D, Bacher A, Eisenreich W, Rohdich F., J. Am. Chem. Soc. 126(40), 2004
PMID: 15469281
Multiple sigma subunits and the partitioning of bacterial transcription space.
Gruber TM, Gross CA., Annu. Rev. Microbiol. 57(), 2003
PMID: 14527287
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 24270893
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids.
Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T., Appl. Microbiol. Biotechnol. 98(10), 2014
PMID: 24687754
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
Production of the marine carotenoid Astaxanthin by Metabolically engineered Corynebacterium glutamicum
Henke N.A., Heider S.A.E., Peters-Wendisch P., Wendisch V.F.., 2016
Biosynthesis of vitamin B6: incorporation of D-1-deoxyxylulose
Hill R.E., Sayer B.G., Spenser I.D.., 1989
Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.
Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K., J. Bacteriol. 189(15), 2007
PMID: 17526706
Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method.
Kang MJ, Lee YM, Yoon SH, Kim JH, Ock SW, Jung KH, Shin YC, Keasling JD, Kim SW., Biotechnol. Bioeng. 91(5), 2005
PMID: 15898075
High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.
Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stockmann C, Seletzky J, Buchs J., J. Biotechnol. 132(2), 2007
PMID: 17681630
Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates.
Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G., Arch. Microbiol. 176(3), 2001
PMID: 11511870
The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase
Larisch C., Nakunst D., Hüser A.T., Tauch A., Kalinowski J.., 2007
Comparison of the effects of inserted C40- and C50-terminally dihydroxylated carotenoids on the mechanical properties of various phospholipid vesicles.
Lazrak T, Milon A, Wolff G, Albrecht AM, Miehe M, Ourisson G, Nakatani Y., Biochim. Biophys. Acta 903(1), 1987
PMID: 3651448
Biosynthesis of isoprenoids: crystal structure of the [4Fe-4S] cluster protein IspG.
Lee M, Grawert T, Quitterer F, Rohdich F, Eppinger J, Eisenreich W, Bacher A, Groll M., J. Mol. Biol. 404(4), 2010
PMID: 20932974
High efficiency electroporation of intact Corynebacterium glutamicum cells.
Liebl W, Bayerl A, Schein B, Stillner U, Schleifer KH., FEMS Microbiol. Lett. 53(3), 1989
PMID: 2612892
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr. Microbiol. 51(1), 2005
PMID: 15971090
Mechanistic aspects of carotenoid biosynthesis.
Moise AR, Al-Babili S, Wurtzel ET., Chem. Rev. 114(1), 2013
PMID: 24175570
Expression of genes of lipid synthesis and altered lipid composition modulates L-glutamate efflux of Corynebacterium glutamicum.
Nampoothiri KM, Hoischen C, Bathe B, Mockel B, Pfefferle W, Krumbach K, Sahm H, Eggeling L., Appl. Microbiol. Biotechnol. 58(1), 2002
PMID: 11831479
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res. Int
Osanai T., Numata K., Oikawa A., Kuwahara A., Iijima H., Doi Y., Tanaka K., Saito K., Hirai M.Y.., 2013
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique
Pfeifer-Sancar K., Mentz A., Rückert C., Kalinowski J.., 2013
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405

Sambrook J.., 2001
Alterations in carotenoid synthesis accompanying mutation in Corynebacterium michiganense.
SAPERSTEIN S, STARR MP, FILFUS JA., J. Gen. Microbiol. 10(1), 1954
PMID: 13130829
Methods for the determination of European Union-permitted added natural colours in foods: a review
Scotter M.J.., 2011
Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol.
Sprenger GA, Schorken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H., Proc. Natl. Acad. Sci. U.S.A. 94(24), 1997
PMID: 9371765
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Thiamine and the carotenoid pigments of Corynebacterium poinsettiae.
STARR MP, SAPERSTEIN S., Arch. Biochem. Biophys. 43(1), 1953
PMID: 13031671
Alternative sigma factor over-expression enables heterologous expression of a type II polyketide biosynthetic pathway in Escherichia coli.
Stevens DC, Conway KR, Pearce N, Villegas-Penaranda LR, Garza AG, Boddy CN., PLoS ONE 8(5), 2013
PMID: 23724102
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl. Microbiol. Biotechnol. 100(1), 2016
PMID: 26496920
Bacterial sigma factors as targets for engineered or synthetic transcriptional control.
Tripathi L, Zhang Y, Lin Z., Front Bioeng Biotechnol 2(), 2014
PMID: 25232540
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851
Network analysis of the MVA and MEP pathways for isoprenoid synthesis.
Vranova E, Coman D, Gruissem W., Annu Rev Plant Biol 64(), 2013
PMID: 23451776
Influence of SigB inactivation on Corynebacterium glutamicum protein secretion.
Watanabe K, Teramoto H, Suzuki N, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 97(11), 2012
PMID: 23179627
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J. Bacteriol. 188(8), 2006
PMID: 16585752
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 29142827
PubMed | Europe PMC

Suchen in

Google Scholar