TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses

Danisman S (2016)
Frontiers of Plant Science 7: 1930.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 3.49 MB
Abstract / Bemerkung
Plants are sessile and as such their reactions to environmental challenges differ from those of mobile organisms. Many adaptions involve growth responses and hence, growth regulation is one of the most crucial biological processes for plant survival and fitness. The plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factor family is involved in plant development from cradle to grave, i.e., from seed germination throughout vegetative development until the formation of flowers and fruits. TCP transcription factors have an evolutionary conserved role as regulators in a variety of plant species, including orchids, tomatoes, peas, poplar, cotton, rice and the model plant Arabidopsis. Early TCP research focused on the regulatory functions of TCPs in the development of diverse organs via the cell cycle. Later research uncovered that TCP transcription factors are not static developmental regulators but crucial growth regulators that translate diverse endogenous and environmental signals into growth responses best fitted to ensure plant fitness and health. I will recapitulate the research on TCPs in this review focusing on two topics: the discovery of TCPs and the elucidation of their evolutionarily conserved roles across the plant kingdom, and the variety of signals, both endogenous (circadian clock, plant hormones) and environmental (pathogens, light, nutrients), TCPs respond to in the course of their developmental roles.
Frontiers of Plant Science
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Danisman S. TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses. Frontiers of Plant Science. 2016;7: 1930.
Danisman, S. (2016). TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses. Frontiers of Plant Science, 7, 1930. doi:10.3389/fpls.2016.01930
Danisman, Selahattin. 2016. “TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses”. Frontiers of Plant Science 7: 1930.
Danisman, S. (2016). TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses. Frontiers of Plant Science 7:1930.
Danisman, S., 2016. TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses. Frontiers of Plant Science, 7: 1930.
S. Danisman, “TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses”, Frontiers of Plant Science, vol. 7, 2016, : 1930.
Danisman, S.: TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses. Frontiers of Plant Science. 7, : 1930 (2016).
Danisman, Selahattin. “TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses”. Frontiers of Plant Science 7 (2016): 1930.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

BRANCHED1: A Key Hub of Shoot Branching.
Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, Ogé L, Demotes-Mainard S, Hamama L, Davière JM, Sakr S., Front Plant Sci 10(), 2019
PMID: 30809235
Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon.
Sanz-Carbonell A, Marques MC, Bustamante A, Fares MA, Rodrigo G, Gomez G., BMC Plant Biol 19(1), 2019
PMID: 30777009
The different tolerance to magnesium deficiency of two grapevine rootstocks relies on the ability to cope with oxidative stress.
Livigni S, Lucini L, Sega D, Navacchi O, Pandolfini T, Zamboni A, Varanini Z., BMC Plant Biol 19(1), 2019
PMID: 30991946
Ethylene Response of Plum ACC Synthase 1 (ACS1) Promoter is Mediated through the Binding Site of Abscisic Acid Insensitive 5 (ABI5).
Sadka A, Qin Q, Feng J, Farcuh M, Shlizerman L, Zhang Y, Toubiana D, Blumwald E., Plants (Basel) 8(5), 2019
PMID: 31052513
Genome-Wide Identification and Analysis of TCP Transcription Factors Involved in the Formation of Leafy Head in Chinese Cabbage.
Liu Y, Guan X, Liu S, Yang M, Ren J, Guo M, Huang Z, Zhang Y., Int J Mol Sci 19(3), 2018
PMID: 29538304
Magnaporthe oryzae Induces the Expression of a MicroRNA to Suppress the Immune Response in Rice.
Zhang X, Bao Y, Shan D, Wang Z, Song X, Wang Z, Wang J, He L, Wu L, Zhang Z, Niu D, Jin H, Zhao H., Plant Physiol 177(1), 2018
PMID: 29549093
Redox-dependent control of nuclear transcription in plants.
He H, Van Breusegem F, Mhamdi A., J Exp Bot 69(14), 2018
PMID: 29659979
CIN-TCP transcription factors: Transiting cell proliferation in plants.
Sarvepalli K, Nath U., IUBMB Life 70(8), 2018
PMID: 29934986
Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor.
Andrés-Colás N, Carrió-Seguí A, Abdel-Ghany SE, Pilon M, Peñarrubia L., Front Plant Sci 9(), 2018
PMID: 30018625
Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat (Triticum aestivum L.).
Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N, Kong X, Chen L, Mao L, Li A., Front Plant Sci 9(), 2018
PMID: 30298074
Identification, Characterization, and Expression Patterns of TCP Genes and microRNA319 in Cotton.
Yin Z, Li Y, Zhu W, Fu X, Han X, Wang J, Lin H, Ye W., Int J Mol Sci 19(11), 2018
PMID: 30463287
Identification and Characterization of microRNA319a and Its Putative Target Gene, PvPCF5, in the Bioenergy Grass Switchgrass (Panicum virgatum).
Xie Q, Liu X, Zhang Y, Tang J, Yin D, Fan B, Zhu L, Han L, Song G, Li D., Front Plant Sci 8(), 2017
PMID: 28424710
Novel cell surface luciferase reporter for high-throughput yeast one-hybrid screens.
Bonaldi K, Li Z, Kang SE, Breton G, Pruneda-Paz JL., Nucleic Acids Res 45(18), 2017
PMID: 28985361
Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci.
Mazur MJ, Spears BJ, Djajasaputra A, van der Gragt M, Vlachakis G, Beerens B, Gassmann W, van den Burg HA., Front Plant Sci 8(), 2017
PMID: 29250092

118 References

Daten bereitgestellt von Europe PubMed Central.

Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis.
Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, Nath U., Plant Cell 22(4), 2010
PMID: 20363772
Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds.
Aguilar-Martinez JA, Poza-Carrion C, Cubas P., Plant Cell 19(2), 2007
PMID: 17307924
Active suppression of a leaf meristem orchestrates determinate leaf growth.
Alvarez JP, Furumizu C, Efroni I, Eshed Y, Bowman JL., Elife 5(), 2016
PMID: 27710768
Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors.
Andriankaja ME, Danisman S, Mignolet-Spruyt LF, Claeys H, Kochanke I, Vermeersch M, De Milde L, De Bodt S, Storme V, Skirycz A, Maurer F, Bauer P, Muhlenbock P, Van Breusegem F, Angenent GC, Immink RG, Inze D., Plant Mol. Biol. 85(3), 2014
PMID: 24549883
TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize.
Bai F, Reinheimer R, Durantini D, Kellogg EA, Schmidt RJ., Proc. Natl. Acad. Sci. U.S.A. 109(30), 2012
PMID: 22773815
Leaf expansion in Arabidopsis is controlled by a TCP‐NGA regulatory module likely conserved in distantly related species
Ballester P, Navarrete‐Gomez M, Carbonero P, Onate‐Sanchez L, Ferrandiz C., Physiol Plant 155(1), 2015
PMID: IND603731257
Functional study of TCP23 in Arabidopsis thaliana during plant development.
Balsemao-Pires E, Andrade LR, Sachetto-Martins G., Plant Physiol. Biochem. 67(), 2013
PMID: 23562796
The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching.
Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C., Plant Physiol. 158(1), 2011
PMID: 22045922
A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence.
Broholm SK, Tahtiharju S, Laitinen RA, Albert VA, Teeri TH, Elomaa P., Proc. Natl. Acad. Sci. U.S.A. 105(26), 2008
PMID: 18574149
A role for APETALA1/fruitfull transcription factors in tomato leaf development.
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N., Plant Cell 25(6), 2013
PMID: 23771895
Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family.
Busch A, Horn S, Muhlhausen A, Mummenhoff K, Zachgo S., Mol. Biol. Evol. 29(4), 2011
PMID: 22135189
Control of corolla monosymmetry in the Brassicaceae Iberis amara.
Busch A, Zachgo S., Proc. Natl. Acad. Sci. U.S.A. 104(42), 2007
PMID: 17940055
Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis.
Challa K., Aggarwal P., Nath U.., 2016
The unique pseudanthium of Actinodium (Myrtaceae) - morphological reinvestigation and possible regulation by CYCLOIDEA-like genes.
Claßen-Bockhoff R, Ruonala R, Bull-Herenu K, Marchant N, Albert VA., Evodevo 4(1), 2013
PMID: 23448118
Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum.
Corley SB, Carpenter R, Copsey L, Coen E., Proc. Natl. Acad. Sci. U.S.A. 102(14), 2005
PMID: 15790677
Evolution of regulatory interactions controlling floral asymmetry.
Costa MM, Fox S, Hanna AI, Baxter C, Coen E., Development 132(22), 2005
PMID: 16236768
The TCP domain: a motif found in proteins regulating plant growth and development.
Cubas P, Lauter N, Doebley J, Coen E., Plant J. 18(2), 1999
PMID: 10363373
An epigenetic mutation responsible for natural variation in floral symmetry.
Cubas P, Vincent C, Coen E., Nature 401(6749), 1999
PMID: 10490023
Analysis of functional redundancies within the Arabidopsis TCP transcription factor family.
Danisman S, van Dijk AD, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RG., J. Exp. Bot. 64(18), 2013
PMID: 24129704
Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically.
Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk AD, Muino JM, Cutri L, Dornelas MC, Angenent GC, Immink RG., Plant Physiol. 159(4), 2012
PMID: 22718775

Darwin C.., 1868
Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height.
Daviere JM, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P., Curr. Biol. 24(16), 2014
PMID: 25127215 robust phylogenetic analysis for the non-specialist.
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O., Nucleic Acids Res. 36(Web Server issue), 2008
PMID: 18424797
MADS: the missing link between identity and growth?
Dornelas MC, Patreze CM, Angenent GC, Immink RG., Trends Plant Sci. 16(2), 2010
PMID: 21144794
Environmental control of branching in petunia.
Drummond RS, Janssen BJ, Luo Z, Oplaat C, Ledger SE, Wohlers MW, Snowden KC., Plant Physiol. 168(2), 2015
PMID: 25911529
Antagonistic action of strigolactone and cytokinin in bud outgrowth control.
Dun EA, de Saint Germain A, Rameau C, Beveridge CA., Plant Physiol. 158(1), 2011
PMID: 22042819
A protracted and dynamic maturation schedule underlies Arabidopsis leaf development.
Efroni I, Blum E, Goldshmidt A, Eshed Y., Plant Cell 20(9), 2008
PMID: 18805992
Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses.
Efroni I, Han SK, Kim HJ, Wu MF, Steiner E, Birnbaum KD, Hong JC, Eshed Y, Wagner D., Dev. Cell 24(4), 2013
PMID: 23449474
TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana.
Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, Van Aken O, Millar AH, Murcha M, Whelan J., Plant Cell 22(12), 2010
PMID: 21183706
BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis.
Gonzalez-Grandio E, Poza-Carrion C, Sorzano CO, Cubas P., Plant Cell 25(3), 2013
PMID: 23524661
Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway.
Guan P, Wang R, Nacry P, Breton G, Kay SA, Pruneda-Paz JL, Davani A, Crawford NM., Proc. Natl. Acad. Sci. U.S.A. 111(42), 2014
PMID: 25288754
GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system.
Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X., J. Exp. Bot. 63(17), 2012
PMID: 23105133
Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids.
Horn S, Pabon-Mora N, Theuß VS, Busch A, Zachgo S., Plant J. 81(4), 2015
PMID: 25557238
Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots.
Howarth DG, Donoghue MJ., Proc. Natl. Acad. Sci. U.S.A. 103(24), 2006
PMID: 16754863
Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness.
Hu Z, Yamauchi T, Yang J, Jikumaru Y, Tsuchida-Mayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M., Plant Cell Physiol. 55(1), 2013
PMID: 24151204
Temporal Control of Plant Organ Growth by TCP Transcription Factors.
Huang T, Irish VF., Curr. Biol. 25(13), 2015
PMID: 26073137
An effector of apple proliferation phytoplasma targets TCP transcription factors-a generalized virulence strategy of phytoplasma?
Janik K, Mithofer A, Raffeiner M, Stellmach H, Hause B, Schlink K., Mol. Plant Pathol. 18(3), 2016
PMID: 27037957
Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae).
Juntheikki-Palovaara I, Tahtiharju S, Lan T, Broholm SK, Rijpkema AS, Ruonala R, Kale L, Albert VA, Teeri TH, Elomaa P., Plant J. 79(5), 2014
PMID: 24923429
Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower.
Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC., PLoS Biol. 7(4), 2009
PMID: 19385720
Orchestration of floral initiation by APETALA1.
Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL., Science 328(5974), 2010
PMID: 20360106
The inheritance Op peloria and flowercolour in foxgloves (digitalis Purpurea).
Keeble F., Pellew M., Jones W.., 1910
TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis.
Kieffer M, Master V, Waites R, Davies B., Plant J. 68(1), 2011
PMID: 21668538
Regulatory genes control a key morphological and ecological trait transferred between species.
Kim M, Cui ML, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E., Science 322(5904), 2008
PMID: 19008450
The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity.
Kim SH, Son GH, Bhattacharjee S, Kim HJ, Nam JC, Nguyen PD, Hong JC, Gassmann W., Plant J. 78(6), 2014
PMID: 24689742
A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis.
Koyama T, Sato F, Ohme-Takagi M., Biosci. Biotechnol. Biochem. 74(10), 2010
PMID: 20944404
Arabidopsis TCP20 links regulation of growth and cell division control pathways.
Li C, Potuschak T, Colon-Carmona A, Gutierrez RA, Doerner P., Proc. Natl. Acad. Sci. U.S.A. 102(36), 2005
PMID: 16123132

Linnaeus C., Rudberg D.., 1744
Intrinsic disorder in transcription factors.
Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK., Biochemistry 45(22), 2006
PMID: 16734424
TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis.
Lucero LE, Uberti-Manassero NG, Arce AL, Colombatti F, Alemano SG, Gonzalez DH., Plant J. 84(2), 2015
PMID: 26303297
Origin of floral asymmetry in Antirrhinum.
Luo D, Carpenter R, Vincent C, Copsey L, Coen E., Nature 383(6603), 1996
PMID: 8893002
Predicting coiled coils from protein sequences.
Lupas A, Van Dyke M, Stock J., Science 252(5009), 1991
PMID: 2031185
Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.
Mimida N, Kidou S, Iwanami H, Moriya S, Abe K, Voogd C, Varkonyi-Gasic E, Kotoda N., Tree Physiol. 31(5), 2011
PMID: 21571725
Chiba Tendril-Less locus determines tendril organ identity in melon (Cucumis melo L.) and potentially encodes a tendril-specific TCP homolog.
Mizuno S, Sonoda M, Tamura Y, Nishino E, Suzuki H, Sato T, Oizumi T., J. Plant Res. 128(6), 2015
PMID: 26275436
Independently evolved virulence effectors converge onto hubs in a plant immune system network.
Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santhanam B, Romero V, Poulin MM, Gebreab F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ, McDonald N, Gai L, Chen H, He Y; European Union Effectoromics Consortium, Vandenhaute J, Roth FP, Hill DE, Ecker JR, Vidal M, Beynon J, Braun P, Dangl JL., Science 333(6042), 2011
PMID: 21798943
miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis.
Nag A, King S, Jack T., Proc. Natl. Acad. Sci. U.S.A. 106(52), 2009
PMID: 20007771
Genetic control of surface curvature.
Nath U, Crawford BC, Carpenter R, Coen E., Science 299(5611), 2003
PMID: 12610308
TCP transcription factors predate the emergence of land plants.
Navaud O, Dabos P, Carnus E, Tremousaygue D, Herve C., J. Mol. Evol. 65(1), 2007
PMID: 17568984
TCP factors: new kids on the signaling block.
Nicolas M, Cubas P., Curr. Opin. Plant Biol. 33(), 2016
PMID: 27310029
A Recently Evolved Alternative Splice Site in the BRANCHED1a Gene Controls Potato Plant Architecture.
Nicolas M, Rodriguez-Buey ML, Franco-Zorrilla JM, Cubas P., Curr. Biol. 25(14), 2015
PMID: 26119747
BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis.
Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, Araki T., Plant Cell 25(4), 2013
PMID: 23613197
Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato.
Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y., Nat. Genet. 39(6), 2007
PMID: 17486095
A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants.
Ortiz-Ramirez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijo JA, Becker JD., Mol Plant 9(2), 2015
PMID: 26687813
Control of leaf morphogenesis by microRNAs.
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D., Nature 425(6955), 2003
PMID: 12931144
Role of TCP Gene BRANCHED1 in the Control of Shoot Branching in Arabidopsis.
Poza-Carrion C, Aguilar-Martinez JA, Cubas P., Plant Signal Behav 2(6), 2007
PMID: 19704556
A genome-scale resource for the functional characterization of Arabidopsis transcription factors.
Pruneda-Paz JL, Breton G, Nagel DH, Kang SE, Bonaldi K, Doherty CJ, Ravelo S, Galli M, Ecker JR, Kay SA., Cell Rep 8(2), 2014
PMID: 25043187
A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock.
Pruneda-Paz JL, Breton G, Para A, Kay SA., Science 323(5920), 2009
PMID: 19286557
Interaction of TCP4-mediated growth module with phytohormones.
Sarvepalli K, Nath U., Plant Signal Behav 6(10), 2011
PMID: 21904111
Control of jasmonate biosynthesis and senescence by miR319 targets.
Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D., PLoS Biol. 6(9), 2008
PMID: 18816164
Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning.
Shleizer-Burko S, Burko Y, Ben-Herzel O, Ori N., Development 138(4), 2011
PMID: 21228002

Smith S.., 1821
The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers.
Steiner E, Efroni I, Gopalraj M, Saathoff K, Tseng TS, Kieffer M, Eshed Y, Olszewski N, Weiss D., Plant Cell 24(1), 2012
PMID: 22267487
Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.
Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA., Proc. Natl. Acad. Sci. U.S.A. 108(48), 2011
PMID: 22065743
Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells.
Swiatek A, Lenjou M, Van Bockstaele D, Inze D, Van Onckelen H., Plant Physiol. 128(1), 2002
PMID: 11788766
Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae).
Tahtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P., Mol. Biol. Evol. 29(4), 2011
PMID: 22101417
The OsTB1 gene negatively regulates lateral branching in rice.
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C., Plant J. 33(3), 2003
PMID: 12581309
The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis.
Tao Q, Guo D, Wei B, Zhang F, Pang C, Jiang H, Zhang J, Wei T, Gu H, Qu LJ, Qin G., Plant Cell 25(2), 2013
PMID: 23444332
Fairy "tails": flexibility and function of intrinsically disordered extensions in the photosynthetic world.
Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B., Front Mol Biosci 2(), 2015
PMID: 26042223
The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins.
Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH., J. Exp. Bot. 63(2), 2011
PMID: 22016421
The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain.
Valsecchi I, Guittard-Crilat E, Maldiney R, Habricot Y, Lignon S, Lebrun R, Miginiac E, Ruelland E, Jeannette E, Lebreton S., Mol Biosyst 9(9), 2013
PMID: 23760157
Redox modulation of plant developmental regulators from the class I TCP transcription factor family.
Viola IL, Guttlein LN, Gonzalez DH., Plant Physiol. 162(3), 2013
PMID: 23686421
Determinants of the DNA binding specificity of class I and class II TCP transcription factors.
Viola IL, Reinheimer R, Ripoll R, Manassero NG, Gonzalez DH., J. Biol. Chem. 287(1), 2011
PMID: 22074922
The limits of selection during maize domestication.
Wang RL, Stec A, Hey J, Lukens L, Doebley J., Nature 398(6724), 1999
PMID: 10094045
A Rare SNP Identified a TCP Transcription Factor Essential for Tendril Development in Cucumber.
Wang S, Yang X, Xu M, Lin X, Lin T, Qi J, Shao G, Tian N, Yang Q, Zhang Z, Huang S., Mol Plant 8(12), 2015
PMID: 26597500
Genetic control of floral zygomorphy in pea (Pisum sativum L.).
Wang Z, Luo Y, Li X, Wang L, Xu S, Yang J, Weng L, Sato S, Tabata S, Ambrose M, Rameau C, Feng X, Hu X, Luo D., Proc. Natl. Acad. Sci. U.S.A. 105(30), 2008
PMID: 18650395
CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum.
Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B., Development 131(4), 2004
PMID: 14757643
LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.
Wu JF, Tsai HL, Joanito I, Wu YC, Chang CW, Li YH, Wang Y, Hong JC, Chu JW, Hsu CP, Wu SH., Nat Commun 7(), 2016
PMID: 27734958
Gibberellin partly mediates LANCEOLATE activity in tomato.
Yanai O, Shani E, Russ D, Ori N., Plant J. 68(4), 2011
PMID: 21771122
RETARDED PALEA1 controls palea development and floral zygomorphy in rice.
Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB., Plant Physiol. 149(1), 2008
PMID: 18952859
Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid.
Zheng XY, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, Dong X., Proc. Natl. Acad. Sci. U.S.A. 112(30), 2015
PMID: 26139525

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28066483
PubMed | Europe PMC

Suchen in

Google Scholar